雷达原理 | 用MATLAB信号处理是如何解算目标的距离和速度信息的?

转载:https://zhuanlan.zhihu.com/p/422798513
大家好!我是喜欢把问题研究明白的调皮哥。

欢迎前来学习毫米波雷达基本原理。本节课将讲的是毫米波雷达利用MATLAB进行信号处理如何解算目标的距离和速度信息。
一、
很多同学在看完雷达原理的基本公式之后,大致上能够明白雷达测距和测速的基本原理,但是到了真正利用MATLAB做信号处理的时候,可能不是很清楚,为什么经过两次FFT(距离维、速度维)这么做就能够得到目标的距离和速度,其背后的实质物理含义是什么?今天带着这个疑问,我把这个问题研究一下,希望能够从最底层的原理给大家解释清楚,并让大家明白到底MATLAB是如何计算出目标得到距离和速度的。

  1. 发射信号的模型可以假设,线性调频连续波(LFMCW) 雷达发射波形的信号形式为调频连续锯齿波,线性调频的含义即调制信号频率随时间线性变化。从时域上看,是一个频率随时间线性变化的波形;从频域上看, 发射信号的频率与时间成正比, 如图1-1所示。

在这里插入图片描述
图1-1 LFMCW锯齿波模型

由此,可以将LFMCW的发射信号模型用下面公式表示:
在这里插入图片描述
其中,发射信号扫频带宽(频段宽度)为 B,发射时宽(信号持续的时间)为T,即调频斜率为 B/T,记为u 。

所以,单周期 LFMCW 雷达发射信号模型的相位可以写成如下形式:
在这里插入图片描述
2. 静止情况下测距

假设静止的目标距离雷达的距离为R,电磁波在空气中传输速度为c,则接受天线接受到的信号比发射的信号延迟τ=2R/c,所以理想情况下接受天线接收到的目标回波信号模型如下所示:
在这里插入图片描述
由上述公式可知,回波信号具有和发射信号同样的信号形式,相对于发射信号在时间上有固定延时τ,故而回波信号的相位可以表式为:
在这里插入图片描述
将接收到回波信号Sr(t)和发射信号St(t)进行混频,并经过低通滤波器后就可以得到一个单一频率的正弦波信号,如图中黑色的“IF signal”便是中频信号的频率,如图1-2所示。

在这里插入图片描述
图1-2 混频

根据公式推导, 可以得到差频信号的相位表达式为:
在这里插入图片描述
此时可以很明显地看出,发射信号和单目标的回波信号的频率差为一个单频信号。根据上式,可以得到中频信号频率fm,如下所示:
在这里插入图片描述
对中频信号进行 ADC 采样, 然后做 FFT 提取信号的频率信息, 假设 FFT 得到频谱的谱峰值对应的频率为fm , 则目标的距离信息可以表示如下:
在这里插入图片描述
3. 运动目标情况下测距

假设,在电磁波的覆盖区域中,某一目标在t0时刻距离发射天线为R0,以径向v远离天线,以远离天线为正方向,至于为什么后续文章会解释)。那么接受到目标的回波信号模型公式依旧与单目标一致,如下所示:
在这里插入图片描述
但是,τ有所改变,如下所示:
在这里插入图片描述
此时,通过混频后得到中频信号的相位如下所示:
在这里插入图片描述
代入τ后的等式变为:
在这里插入图片描述

很显然,根据上述公式可知,对于运动目标的信号的中频信号依然是一个线性调频信号,所以信号的调频斜率Um,载频fm,初相ϕm分别如下:

在这里插入图片描述

因为光速c等于3*10^8m/s,所以忽略c的平方项,则中频信号的时宽带宽积Dm为:
在这里插入图片描述
其中,Bm中频信号的调频带宽,为D为发射信号时宽带宽积。

上述公式可以表明,即使目标在几百米每秒的高速运动情况下,中频信号的时宽带宽积仅有原来的10^-6 倍,在毫米波雷达发射极大时宽带宽积(106)的信号情况下,中频信号Dm的数量级也只有100 。

因此,可近似认为回波差拍信号是一单频信号,通过频谱分析(FFT)即能得到其中心频率。所以TI的官方文档中,将中频信号近似地写成:
在这里插入图片描述
并说明了这个公式是近似值,其中f0等效fm。TI官方给出的中频信号中心频率和相位的公式如下:
其中,d为目标距雷达的距离。
在这里插入图片描述
下面由上述推导的公式来证明,为什么最终会是这个简单的公式呢?将下面的公式去掉光速的平方项,做近似。
在这里插入图片描述
如果忽略多普勒频率对对中频信号频率的影响,则
在这里插入图片描述
关于上述TI官方给出的中频信号的近似值,就是这么得到的。近似公式忽略 IF 信号的频率与物体速度的依赖关系。在快速 FMCW 雷达中,其影响通常非常小,且在处理完成多普勒 FFT 后,即可轻松对其进行进一步校正,这就是多普勒相位补偿。

二、

假设单个扫描周期 ADC采样点数为 N, 采样频率为Fs, 式中 n 为 FFT 谱峰对应的频点, 根据 T、 Fs、 N 之间的关系,距离与频率关系的公式可进一步化简为:
在这里插入图片描述
式中,c/2B为雷达的距离分辨率ΔR, 可见中频信号的 FFT 谱峰对应的频点,即目标距离门号,乘以距离分辨率就可得到目标的距离。

上述公式就是在用MATLAB计算目标的距离的时候,我们通常得到的是点的序号(距离门号),而不是直接得到目标的距离,因此需要通过这个公式将距离门号转换成目标真实的距离。

在MATLAB中,对于距离维做FFT,目的就是找出中频频率峰值和频点,然后根据峰值所在的距离门号,解算出目标的距离,具体如图2-1所示。
在这里插入图片描述
图2-1 距离解算前

例如,上述数据的雷达发射信号的真实带宽:68*(256/5500)=3165MHz;真实距离分辨率:ΔR = C/2B=0.048m,所以对应点目标的距离为:

R = (n-1)ΔR = 114*0.047=5.47m,MATLAB起始点是从1开始的,所以是n-1。即可得到距离解算的结果,如图2-2所示。

在这里插入图片描述

图2-2 距离解算后

至此,我们推导并论证了线性调频连续波测距原理的来龙去脉,大概讲清楚了从信号发射、回波信号、混频、低通滤波、中频信号,到距离估计的整个脉络,同时梳理清楚了由TI官方给出的公式近似值的背后隐藏的一些理论,并展现了我们为什么要这么做,背后的含义是什么的解释。最后也为大家推导的公式,为后续做相位补偿提供了理论依据。
三、
之前的文章写过线性调频连续波测速的基本原理,是利用多个脉冲之间的相位差,然后做FFT得到的。
重现上述推导的公式如下:
在这里插入图片描述
对于两个相邻周期的信号,由于周期间隔时间Tc较短,距离分辨率有限,两个周期内距离维FFT谱中的峰值位置几乎没有发生变化,但是由于相位比距离更加敏感,即周期间微小的距离变化会引起中频信号的初相的变化。

由傅里叶变换特性,信号的初相体现在峰值处的复数值对应的相位,计算相邻周期的相位差,即可得到目标的速度:
在这里插入图片描述
其中,两个脉冲相邻的微小距离变化为v*Tc,所以两个脉冲间的速度为:
在这里插入图片描述
推广到多个脉冲,如128个,那么相位的变化是呈周期性的,速度维度做128点FFT后的峰值就是相位差,即获取速度对应的峰值和频点再通过解算便可获得目标的速度,这个过程就是速度维FFT。接下来进行速度解算。上述公式经过推导可以变为:
在这里插入图片描述
其中,相位的最大值为2π。由此,速度的解算依赖于速度分辨率和速度门号,速度门号即为速度维FFT之后拿到的峰值所对应的下标(频点)。例如图3-1所示,为速度解算过程。

在这里插入图片描述
图3-1 速度解算前

其中,X轴是距离,Y轴是速度,上图X=31,Y=69;距离分辨率为0.48m,速度分辨率为0.083m/s。

所以根据上述推导的公式,n=31-1=30;R=ΔRn =1.41m,速度分根据目标运动方向分为正负,这里一共是128个脉冲,零速通道是第64个脉冲,所以69为正速通道,具体速度通道号为Y=69-64=5;n=5-1=4;v =Δvn=0.33m/s,如图3-2所示。

在这里插入图片描述

图3-2 速度解算后

至此,关于目标的距离估计、速度估计的解算方法解释完毕!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值