毫米波雷达3-三个FFT(距离,速度,角度)

快慢时间维度

由于电磁波传播的速度非常之快,导致了回波间隔比发射间隔小了好几个数量级
在这里插入图片描述

下图中,每一行(快时间维)对应的是一个脉冲回波的连续采样,在快时间维度,即使一个移动的物体,我们也可以看作不动,那么对于快时间维度进行FFT就可以得到距离。不过信号相位的改变则不能忽略了(因为即使微小的距离或时间变化都会造成相位发生较大改变),而这相位的改变可以用于速度(多普勒)测量
我们在慢时间进行FFT的时候,物体可以看作移动了,这时我们提取2维fft中携带的相位(多普勒)信息就可以获得物体的速度了。
在这里插入图片描述

空间维度

不同的天线之间本就有一定的相位差,就引起了不同的尖峰,那么实际上这代表了不同方向产生的“频率分量”,综合所有的方向的“频率分量”,第三维的FFT终于就给了我们目标角度的信息。

FFT原理

具体来说,FFT将一个信号分解成多个正弦和余弦波,得到每个频率成分的幅值和相位信息。在这个过程中,复数信号数据的实部和虚部被视为同相分量(I)和正交分量(Q),它们可以用来表示信号的振幅和相位。

以下是使用FFT从复数信号数据中获取频率信息的基本步骤:

采样:首先,你需要对信号进行采样。采样频率应大于信号频率的两倍,以满足奈奎斯特采样定理。

FFT变换:然后,将采样得到的数字信号送入FFT进行变换处理。通常,如果我们取N个采样点, 经过FFT运算之后, 就可以得到N个点的FFT结果。

计算频率:对于FFT结果中的每一个点,其对应的频率可以通过其索引值乘以分辨率来计算。分辨率等于采样频率除以FFT的点数。

提取幅值:FFT函数计算得到的是复数结果,其模长代表了对应频率成分的幅值。

绘制频谱:最后,你可以绘制出频谱图,以直观地展示各个频率成分的幅值。

需要注意的是,由于FFT结果具有对称性,通常只使用前N/2个采样点的结果。此外,在实际操作中,为了提高FFT运算的效率,通常会选择使N等于2的整数次方。在处理噪声或者非常小的数值时,可能需要定义一个容忍阈值,并忽略所有低于该阈值的幅值。

useful links

https://zhuanlan.zhihu.com/p/605511153
https://blog.csdn.net/weixin_43824941/article/details/116894474

### 关于距离变换与FFT的相关实现 #### 距离FFT的概念 在雷达信号处理中,距离FFT是一种用于提取目标距离信息的技术。它通过对混频后的中频信号进行快速傅里叶变换(FFT),将时域信号转换为频域信号。由于频率与目标距离之间存在线性关系,因此可以通过分析频谱中的峰值位置来确定目标的距离[^4]。 #### 距离FFT的算法原理 1. **发射信号与回波信号的关系** FMCW雷达发送一个线性调频信号 \( s(t) \),经过一段时间延迟后接收到回波信号 \( r(t) \)。两者之间的差拍信号可以表示为目标距离引起的相位变化。假设目标距离为 \( R \),则对应的频率偏移为: \[ f_d = \frac{2R}{c}B/T_s \] 其中,\( c \) 是光速,\( B \) 是带宽,\( T_s \) 是调制周期。 2. **混频操作** 发射信号与回波信号经混频器混合后生成中频信号 \( i(t) \)。此信号包含了目标的距离信息。 3. **采样与时域数据准备** 对中频信号进行均匀采样,获得一组长度为 \( N \) 的时域样本 \( x[n] \)[^4]。 4. **执行FFT** 将上述时域数据送入FFT模块,计算其频谱特性。FFT的核心公式如下: \[ X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}} \] 计算完成后,取绝对值以获取幅值谱,并找到最大值对应的位置作为目标距离估计[^1]。 5. **距离分辨率** 距离分辨率为: \[ \Delta R = \frac{cT_s}{2B} \] 提高带宽 \( B \) 或延长调制周期 \( T_s \) 可提升距离分辨率。 #### MATLAB代码示例 以下是基于FMCW雷达的距离FFT实现的一个简单例子: ```matlab % 参数设置 fs = 1e6; % 采样率 (Hz) Ts = 1e-3; % 扫描时间 (s) t = 0:1/fs:(Ts-1/fs); % 时间向量 f_start = 76e9; % 初始频率 (Hz) f_stop = 77e9; % 终止频率 (Hz) B = f_stop - f_start; % 带宽 (Hz) % 目标参数 R_target = 10; % 目标距离 (m) fd = 2*R_target*B/(light_speed*Ts); % 多普勒频率 (Hz) % 中频信号模拟 i_t = cos(2*pi*fd*t); % FFT处理 Nfft = length(i_t); X_k = fft(i_t, Nfft); freq_axis = (-Nfft/2:Nfft/2-1)*(fs/Nfft); % 频率轴 distance_axis = freq_axis * light_speed * Ts / (2*B); % 距离轴 % 结果显示 figure; plot(distance_axis, abs(fftshift(X_k))); xlabel('Distance (m)'); ylabel('Amplitude'); title('Range Profile via Distance FFT'); grid on; ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值