快慢时间维度
由于电磁波传播的速度非常之快,导致了回波间隔比发射间隔小了好几个数量级
下图中,每一行(快时间维)对应的是一个脉冲回波的连续采样,在快时间维度,即使一个移动的物体,我们也可以看作不动,那么对于快时间维度进行FFT就可以得到距离。不过信号相位的改变则不能忽略了(因为即使微小的距离或时间变化都会造成相位发生较大改变),而这相位的改变可以用于速度(多普勒)测量
我们在慢时间进行FFT的时候,物体可以看作移动了,这时我们提取2维fft中携带的相位(多普勒)信息就可以获得物体的速度了。
空间维度
不同的天线之间本就有一定的相位差,就引起了不同的尖峰,那么实际上这代表了不同方向产生的“频率分量”,综合所有的方向的“频率分量”,第三维的FFT终于就给了我们目标角度的信息。
FFT原理
具体来说,FFT将一个信号分解成多个正弦和余弦波,得到每个频率成分的幅值和相位信息。在这个过程中,复数信号数据的实部和虚部被视为同相分量(I)和正交分量(Q),它们可以用来表示信号的振幅和相位。
以下是使用FFT从复数信号数据中获取频率信息的基本步骤:
采样:首先,你需要对信号进行采样。采样频率应大于信号频率的两倍,以满足奈奎斯特采样定理。
FFT变换:然后,将采样得到的数字信号送入FFT进行变换处理。通常,如果我们取N个采样点, 经过FFT运算之后, 就可以得到N个点的FFT结果。
计算频率:对于FFT结果中的每一个点,其对应的频率可以通过其索引值乘以分辨率来计算。分辨率等于采样频率除以FFT的点数。
提取幅值:FFT函数计算得到的是复数结果,其模长代表了对应频率成分的幅值。
绘制频谱:最后,你可以绘制出频谱图,以直观地展示各个频率成分的幅值。
需要注意的是,由于FFT结果具有对称性,通常只使用前N/2个采样点的结果。此外,在实际操作中,为了提高FFT运算的效率,通常会选择使N等于2的整数次方。在处理噪声或者非常小的数值时,可能需要定义一个容忍阈值,并忽略所有低于该阈值的幅值。
useful links
https://zhuanlan.zhihu.com/p/605511153
https://blog.csdn.net/weixin_43824941/article/details/116894474