无向图的深度优先搜索

无向图的深度优先搜索

邻接矩阵存储结构

在这里插入图片描述
连通图的深度优先遍历类似于树的先根遍历。
注意:要习惯于把分支和有进退的思想和递归联系起来
在这里插入图片描述

#include <iostream>
#include<cmath>
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100
//定义无穷大
#define  MAXInt 32767
typedef int Status;
typedef char TElemType;
using namespace std;
int visited[MAXSIZE];
//定义顶点数据类型
typedef char VerTexType;
//定义边的数据类型
typedef int ArcType;
//定义图的数据结构
typedef struct {
	//顶点表
	VerTexType vexs[MAXSIZE];
	//邻接矩阵
	ArcType arcs[MAXSIZE][MAXSIZE];
	//当前结点数和当期边数
	int vexnum, arcnum;
}AMGraph; //Adjacency(邻接) Matrix Graph
//函数输入一个顶点的值,返回该顶点在顶点表中的下标,不存在则返回-1
int LocateVex(VerTexType x, AMGraph& G) {
	for (int i = 0; i < G.vexnum; i++)
	{
		if (x == G.vexs[i])
		{
			return i;
		}
	}
	return -1;
}
//创建无向图
void createUDN(AMGraph& G) {
	//先输入图的顶点数和边数
	cout << "请输入要创建的无向图的顶点数和边数:" << "\n";
	scanf_s("%d%d", &G.vexnum, &G.arcnum);
	//依次输入各个顶点的值
	cout << "依次输入各个顶点的值" << "\n";
	for (int i = 0; i < G.vexnum; i++) {
		cin >> G.vexs[i];
	}
	//对邻接矩阵进行初始化
	for (int i = 0; i < G.vexnum; i++) {

		for (int j = 0; j < G.vexnum; j++) {
			G.arcs[i][j] = 0;
		}
	}
	cout << "请输入每条边的顶点和权值:输入方式:顶点1 顶点2" << "\n";
	//输入依次输入每一条边的顶点和权值
	for (int i = 0; i < G.arcnum; i++)
	{
		VerTexType a, b;
		cin >> a >> b ;
		//找到输入的顶点a,b在顶点表中的下标
		int x = LocateVex(a, G);
		int y = LocateVex(b, G);
		if (x != -1 && y != -1) {
			G.arcs[x][y] = 1;
			G.arcs[y][x] = 1;
		}

	}


}
//输出顶点表以及邻接矩阵
void outPut(AMGraph G) {
	cout << "顶点表如下:" << "\n";
	for (int i = 0; i < G.vexnum; i++) {
		printf("%c ", G.vexs[i]);
	}
	printf("\n输出邻接矩阵如下\n");
	for (int i = 0; i < G.vexnum; i++)
	{
		for (int j = 0; j < G.vexnum; j++)
		{
			printf("%6d", G.arcs[i][j]);
		}
		printf("\n");
	}


}
//深度优先搜索遍历
/*
	根据老师说的写倒是挺容易的,
	就是需要自己花点时间理解这个思路
*/
void DFS(AMGraph G, int v) {
	cout << G.vexs[v] << " ";
	visited[v] = 1;
	for (int i = 0; i < G.vexnum; i++)
	{
		//(G.arcs[v][i]!=0)说明有该边,visited[i]==0说明未被访问
		if ((G.arcs[v][i]!=0)&&visited[i]==0)
		{
			DFS(G, i);
		}
	}
}


int main() {
	AMGraph G;
	createUDN(G);
	outPut(G);
	for (int i = 0; i < G.vexnum; i++)
	{
		visited[i] = 0;
	}
	cout << "\n请输入深度优先搜索开始的结点的值:\n" << "";
	VerTexType x;
	cin >> x;
	cout << "\n深度优先搜索遍历的顺序为:" << "\n";
	DFS(G, LocateVex(x,G));
	return 0;
}

测试样例:
在这里插入图片描述

在这里插入图片描述
算法效率分析:

采用邻接矩阵来表示图,遍历图中每个顶点都要从头开始扫描该顶点所在行,时间复杂度为O(n2

邻接表表示法

#include<iostream>
using namespace std;
#define OK 1
#define ERROR 0
#define FALSE 0
#define TRUE 1
#define MAXNum 100
//定义无穷大
#define  MAXInt 32767
typedef int Status;
//定义顶点数据类型
typedef char VerTexType;
//定义节点权重的类型
typedef int OtherInfo;
//定义边的数据类型
typedef struct ArcNode {
	int adjvex;//该边指向的顶点的位置
	ArcNode* nextarc;//指向下一条边的指针
	OtherInfo info;//与边相关的信息
}ArcNode;
//定义表结点的类型
typedef struct VNode {
	VerTexType data;//顶点信息
	ArcNode* firstarc;//指向第一条依附该顶点的边的指针
}VNode, AdjList[MAXNum];//AdjList是邻接表类型
//图结构的类型
typedef struct {
	AdjList vertices;//邻接表
	int vexnum, arcnum;//图当前顶点数和弧数
}ALGraph;//图的定义
//该函数查找顶点x在图的顶点表中的下标
int LocateVex(ALGraph G, VerTexType x) {
	for (int i = 0; i < G.vexnum; i++) {
		if (G.vertices[i].data == x) {
			return i;
		}
	}
	return -1;
}

//邻接表的创建——无向图
Status createUDN(ALGraph& G) {
	cout << "请输入无向图的总结点的数目和总的边数" << "\n";
	cin >> G.vexnum >> G.arcnum;
	cout << "请输入无向图中的各个顶点" << "\n";
	for (int i = 0; i < G.vexnum; i++)
	{
		cin >> G.vertices[i].data;
		//初始化表头结点的指针域
		G.vertices[i].firstarc = NULL;
	}
	cout << "请输入每条边的信息:(顶点1 顶点2)" << "\n";
	for (int i = 0; i < G.arcnum; i++) {
		VerTexType x, y;
		cin >> x >> y;
		//查找两个顶点的下标
		int xIndex = LocateVex(G, x);
		int yIndex = LocateVex(G, y);
		//找到这两个顶点的下标之后就可以往firstarc域插入表结点了
		ArcNode* xArcNode = new ArcNode;
		ArcNode* yArcNode = new ArcNode;
		if (xIndex != -1 && yIndex != -1) {
			//在x结点后面插入邻接y结点的信息
			xArcNode->info = 1;
			xArcNode->adjvex = yIndex;
			xArcNode->nextarc = G.vertices[xIndex].firstarc;
			G.vertices[xIndex].firstarc = xArcNode;
			//在y结点后面插入邻接x结点的信息
			yArcNode->info = 1;
			yArcNode->adjvex = xIndex;
			yArcNode->nextarc = G.vertices[yIndex].firstarc;
			G.vertices[yIndex].firstarc = yArcNode;
		}
		else
		{
			return ERROR;
		}
	}
	return OK;
}

void outPut(ALGraph G) {
	cout << "输出顶点表如下:" << "\n";
	for (int i = 0; i < G.vexnum; i++)
	{
		cout << G.vertices[i].data << " ";
	}
	cout << "\n输入邻接表如下:" << "\n";
	for (int i = 0; i < G.vexnum; i++)
	{
		printf("%c顶点相邻接的顶点为:\n", G.vertices[i].data);
		ArcNode* p = G.vertices[i].firstarc;
		while (p) {
			printf("%c ", G.vertices[p->adjvex].data);
			p = p->nextarc;
		}
		printf("\n");
	}

}
//进行深度优先搜索
int visited[MAXNum];
void DFS(ALGraph G, int v) {
	visited[v] = 1;
	cout << G.vertices[v].data << " ";
	ArcNode* p = G.vertices[v].firstarc;//这个结点的第一条边的信息
	while (p) {
		if (visited[p->adjvex]==0)
		{
			DFS(G, p->adjvex);
		}
		p = p->nextarc;
	}
}

int main() {
	ALGraph G;
	createUDN(G);
	//输出该图进行查看,是否正确
	outPut(G);
	//初始化访问数组
	for (int i = 0; i < G.vexnum; i++)
	{
		visited[i] = 0;
	}
	cout << "\n请输入深度优先搜索开始的结点的值:\n" << "";
	VerTexType x;
	cin >> x;
	cout << "\n深度优先搜索遍历的顺序为:" << "\n";
	DFS(G, LocateVex(G,x));
	return 0;
}

测试样例自己用上那个图测试就可以了!

算法效率分析:

采用邻接表来表示图,虽然有2e个表结点,但是只需要扫描e个结点即可完成遍历,再加上n个头结点的时间,时间复杂度为O(n+e)

故:

  • 稠密图适于在邻接矩阵上进行深度遍历
  • 稀疏图适于在邻接表上进行深度遍历
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜iwi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值