PyTorch深度学习实践(十二)循环神经网络基础篇

对线性层的复用
Dense网络:稠密网络,有很多线性层对输入数据进行空间上的变换,又叫DNN
输入x1,x2…xn是数据样本的不同特征
Dense连接就是指全连接
比如预测天天气,就需要知道之前几天的数据,每一天的数据都包含若个特征,需要若干天的数据作为输入

假设现在取前3天,每一天有3个特征
在这里插入图片描述第一种方法:把x1,x2,x3拼成有9个维度的长向量,然后去训练最后一天是否有雨
在这里插入图片描述用全连接稠密网络进行预测,如果输入序列很长,而且每一个序列维度很高的话,对网络训练有很大挑战,因为稠密网络(全连接网络)实际上权重是最多的。对于卷积层:比如输入通道是128个,输出通道是64个,如果用55的卷积。权重数就是 2564188=204800,卷积层的输入输出只与通道数和卷积核的大小有关,全连接层和变换之后的数据大小有关
,比如3阶张量经过一系列的卷积变换还剩下4096个元素,4096我们很少直接降成1维或者10维,而是先降成1024维,4096
1024=4194304,所以相比起来,卷积层的权重并不多,而全连接层的权重较多
。在网络的全部参数中,全连接层是占大头的
为什么卷积神经网络的权重比较少呢?
因为使用了权重共享的概念,做卷积时,整个图像的卷积核是共享的,并不是图像上的每一个像素要和下一层的featureMap建立连接,权重数量就少
处理视频的时候,每一帧就少一张图像,我们需要把一组图像做成一个集合,如果用全连接网络的话,使用到的权重的数量就是一个天文数字,难以处理
RNN专门用来处理带有序列模式的数据,也使用权重共享减少需要训练的权重的数量
我们把x1,x2,x3,xn看成是一个序列,不仅考虑x1,x2之间的连接关系,还考虑x1,x2的时间上的先后顺序
x2依赖于x1,x3依赖于x2,下一天的天气状况部分依赖于前一天的天气状况,RNN主要处理这种具有序列连接的
天气,股市,金融,自然语言处理都是序列数据
RNN Cell本质是一个线性层(linear),把一个维度映射到另一个维度(比如把输入的3维向量xt变成输出5维向量ht)
在这里插入图片描述这个线性层与普通的线性层的区别是这个线性层是共享的
在这里插入图片描述展开就是下图(其中所有的RNN cell是同一个线性层,因为是展开的嘛),h0是先验值,没有就设置成0向量
在这里插入图片描述在这里插入图片描述
具体的计算过程:

输入xt先做线性变换,h t-1也是,xt的维度是input_size,h t-1的维度是hidden_size,输出ht的维度是hidden_size,我们需要先把xt的维度变成hidden_size,所以Wih应该是一个 hidden_sizeinput_size的矩阵,Wihxt得到一个 hidden_size1的矩阵(就是维度为hidden_size的向量),bih是偏置。输入权重矩阵Whh是一个hidden_sizehidden_size的矩阵。
whhHt-1+bhh和WihXt+bih都是维度为hidden_size的向量,两个向量相加,就把信息融合起来了,融合之后用tanh做激活,循环神经网络的激活函数用的是tanh,因为tanh的取值在-1到+1之间,算出结果得到隐藏层输出ht
在这里插入图片描述

把RNN Cell以循环的方式把序列(x1,x2,…)一个一个送进去,然后依次算出隐藏层(h1,h2…)的过程,每一次算出来的h会作为下一个RNN Cell的输入,这就叫循环神经网络
在这里插入图片描述

PyTorch里面构造RNN的两种方式:

①自己构建Cell
需要设定输入的值input_size,和隐层的值hidden_size,就能确定权重W的维度和偏置b的维度

cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
hidden = cell(input, hidden)#实例化Cell之后,我们需要给定当前的输入input以及当前的hidden,所以需要用循环来处理

比如

h1=Cell(x1,h0)

在这里插入图片描述batchSize表示批量
seqLen=3表示每一个样本都有x1,x2,x3这些特征
inputSize=4表示每一个特征都是4维的
hoddenSize=2表示每一个隐藏层是2维

𝒊𝒏𝒑𝒖𝒕. 𝑠ℎ𝑎𝑝𝑒 = (𝒃𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆,𝒊𝒏𝒑𝒖𝒕𝑺𝒊𝒛𝒆)
𝑜𝑢𝑡𝑝𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 =(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, ℎ𝑖𝑑𝑑𝑒𝑛𝑆𝑖𝑧)#h0需要满足这个条件

The sequence can be warped in one Tensor with shape:

𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 𝑠ℎ𝑎𝑝𝑒 = (𝒔𝒆𝒒𝑳𝒆𝒏, 𝒃𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆,𝒊𝒏𝒑𝒖𝒕𝑺𝒊𝒛)

代码展示

import torch
batch_size=1
seq_len=3
input_size=4
hidden_size=2
Cell=torch.nn.RNNCell(input_size=input_size,hidden_size=hidden_size)#初始化,构建RNNCell
dataset=torch.randn(seq_len,batch_size,input_size)#设置dataset的维度
hidden=torch.zeros(batch_size,hidden_size)#隐层的维度:batch_size*hidden_size,先把h0置为0向量
for idx,input in enumerate(dataset):
    print('='*20,idx,'='*20)
    print('Input size:',input.shape)
    hidden=Cell(input,hidden)
    print('Outputs size:',hidden.shape)
    print(hidden)

结果:

==================== 0 ====================
Input size: torch.Size([1, 4])
Outputs size: torch.Size([1, 2])
tensor([[0.8677, 0.8320]], grad_fn=<TanhBackward>)
==================== 1 ====================
Input size: torch.Size([1, 4])
Outputs size: torch.Size([1, 2])
tensor([[-0.9137, -0.5884]], grad_fn=<TanhBackward>)
==================== 2 ====================
Input size: torch.Size([1, 4])
Outputs size: torch.Size([1, 2])
tensor([[0.9840, 0.9235]], grad_fn=<TanhBackward>)

②直接使用RNN

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers)#num_layers:RNN的层数

#num_layers:RNN的层数,如果RNN有多层,每一层都会有输出

out, hidden = cell(inputs, hidden)

在这里插入图片描述inputs:所有的x,x1,x2,x3,xn
用RNN不用自己写循环,它自动循环,所以输入的时候要把所有的序列都送进去,然后给定h0,然后我们就会得到所有的隐层输出以及最后一层的输出
在这里插入图片描述当RNN有多层,同样颜色的RNNCell是同一个,所以下图是有3个线性层(一个RNNCell是一个线性层)

在这里插入图片描述

代码

import torch
batch_size=1
seq_len=3
input_size=4
hidden_size=2
num_layers=1
cell=torch.nn.RNN(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers)
#构造RNN时指明输入维度,隐层维度以及RNN的层数
inputs=torch.randn(seq_len,batch_size,input_size)
hidden=torch.zeros(num_layers,batch_size,hidden_size)
out,hidden=cell(inputs,hidden)
print('Output size:',out.shape)
print('Output:',out)
print('Hidden size:',hidden.shape)
print('Hidden',hidden)

结果

Output size: torch.Size([3, 1, 2])
Output: tensor([[[-0.9123,  0.9218]],

        [[ 0.9394, -0.2471]],

        [[-0.9064,  0.5193]]], grad_fn=<StackBackward>)
Hidden size: torch.Size([1, 1, 2])
Hidden tensor([[[-0.9064,  0.5193]]], grad_fn=<StackBackward>)

如果初始化RNN时,把batch_first设置成了TRUE,那么inputs的参数batch_size和seq_len需要调换一下位置
在这里插入图片描述

例子:训练RNN网络,输入“hello”,输出“ohlol”

在这里插入图片描述

①把字符转成向量
在这里插入图片描述inputsize=4,因为输入有4个字符(e h l o)
这相当于一个多分类问题,输出就是一个4维的向量,每一维代表是某一个字符的概率,接交叉熵就能输出概率了
在这里插入图片描述在这里插入图片描述代码

import torch
input_size=4
hidden_size=4
batch_size=1
idx2char=['e','h','l','o']
x_data=[1,2,2,2,3]
y_data=[3,1,2,3,2]
one_hot_lookup=[[1,0,0,0],
                [0,1,0,0],
                [0,0,1,0],
                [0,0,0,1]]
#查询字典
x_one_hot=[one_hot_lookup[x] for x in x_data]#独热向量
inputs=torch.Tensor(x_one_hot).view(-1,batch_size,input_size)#取出来one_hot_lookup中的一行向量
labels=torch.LongTensor(y_data).view(-1,1)

#构建模型
class Model(torch.nn.Module):
    def __init__(self,input_size,hidden_size,batch_size):
        super(Model,self).__init__()
        self.batch_size=batch_size
        self.input_size=input_size
        self.hidden_size=hidden_size
        self.rnncell=torch.nn.RNNCell(input_size=self.input_size,hidden_size=self.hidden_size)
    def forward(self,input,hidden):
        hidden=self.rnncell(input,hidden)#ht=cell(xt,ht-1)
        return hidden
    def init_hidden(self):
        return torch.zeros(self.batch_size,self.hidden_size)
net=Model(input_size,hidden_size,batch_size)
criterion=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(net.parameters(),lr=0.1)
#训练
for epoch in range(15):
    loss=0
    optimizer.zero_grad()#每一轮训练先把优化器的梯度清零
    hidden=net.init_hidden()
    print('Predicted string:',end='')
    for input,label in zip(inputs,labels):
        hidden=net(input,hidden)
        loss+=criterion(hidden,label)
        _,idx=hidden.max(dim=1)#hidden现在是4维向量,用max找到最大的概率
        print(idx2char[idx.item()],end='')
        loss.backward()
       # loss.backward(retain_graph=True)
        optimizer.step()
        print(',Epoch [%d/15] loss=%.4f' % (epoch+1,loss.item())          
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值