数学知识点回顾(三)

4.设A是方阵,如有矩阵关系式AB=AC,则必有( d    )

  A. A=0                                                                     B.BCA=0

  C. A=0B=C                                                  D.|A|=0B=C

10.设A是一个n(≥3)阶方阵,下列陈述中正确的是(   b  )

  A.如存在数λ和向量α使α,则αA的属于特征值λ的特征向量

  B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值

  C.A的2个不同的特征值可以有同一个特征向量

  D.如λ1,λ2,λ3A的3个互不相同的特征值,α1α2α3依次是A的属于λ1,λ2,λ3的特征向量,则α1α2α3有可能线性相关

12.设A是正交矩阵,则下列结论错误的是(   b  )

  A.|A|2必为1                                         B.|A|必为1

  C.A-1=AT                                             D.A的行(列)向量组是正交单位向量组

13.设A是实对称矩阵,C是实可逆矩阵,B=CTAC.则(  d   )

  A.AB相似

  B. AB不等价

  C. AB有相同的特征值

  D. AB合同

14.下列矩阵中是正定矩阵的为(    c )

  A.                                             B.

  C.                                     D.

21.设向量αβ的长度依次为2和3,则向量α+βα-β内积α+βα-β)=    -5 .

24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为   x1^2 + x2^2 + x3 ^2 - x4^2    .

施瓦茨不等式的证明

[x,y]^2 ≤ [x,x]*[y,y]

设x=(x1,x2...xn)
y=(y1,y2...yn)

则[x,y]^2=(x1y1+x2y2+...xnyn)^2
[x,x]*[y,y]=(x1^2+x2^2+...xn^2)(y1^2+y2^2+...+yn^2)

首先构造方程(x1z-y1)^2+(x2z-y2)^2+...+(xnz-yn)^2=0
z是未知数,其他的是参数。

我们知道这个方程最多只有一个解,这个方程可以改成
(x1^2+x2^2+...xn^2)z^2-2*=(x1y1+x2y2+...xnyn)*z+(y1^2+y2^2+...+yn^2)=0

那么它的Δ<=0

也就是说=4(x1y1+x2y2+...xnyn)^2-4(x1^2+x2^2+...xn^2)(y1^2+y2^2+...+yn^2)<=0

则[x,y]^2 ≤ [x,x]*[y,y]

格拉姆-施密特正交化 的证明

http://blog.sina.com.cn/s/blog_495b66300100mrho.html

调和平均<=几何平均<=算术平均<=平方平均 的证明:
即1/(1/a+1/b)<=根号(ab)<=(a+b)/2<=根号[(a^2+b^2)/2]

调和平均=1/(1/a+1/b)

几何平均=根号(ab)

算术平均=(a+b)/2

平方平均=根号[(a^2+b^2)/2]


已知x为锐角,求证sinx<x<tanx

已知x为锐角,用图的方法来解答你第一个不等式。

向左转 | 向右转

正弦线AP=sinx,正切线BC=tanx, 弧BP=x

明显就能看出AP<BP<BC 也就是、sinx<x<tanx


第二个不等式由(sinx)^2+(cosx)^2=1 推出,

由于sinx<=1 cosx<=1 且不可能同时满足sinx=1 cosx=1,所以(sinx)^3=sinx*(sinx)^2<(sinx)^2

(cosx)^3=cosx*(cosx)^2<(cosx)^2  必然满足其一,所以(sinx)^3+(cosx)^3<(sinx)^2+(cosx)^2=1


弧长公式:n是圆心角度数,r是半径,l是圆心角弧长。
l = n(圆心角)x π(圆周率)x r(半径)/180
l =α(圆心角弧度数)× r(半径)
在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=n°πR÷180°(l=n°x2πR/360°)
例:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180
=45×π×1/180
=45×3.14×1/180
约等于0.785(cm)
扇形的弧长第二公式为:[1] 
扇形的弧长,事实上就是圆的其中一段边长,扇形的角度是360度的几分之一,那么扇形的弧长就是这个圆的周长的几分之一,所以我们可以得出:
扇形的弧长=2πr×角度/360
其中,2πr是圆的周长,角度为该扇形的角度值。

拓展

扇形 面积公式:S(扇形面积)=nπR^2/360
n为圆心角的度数,R为底面圆的半径
S扇=nπr^2/360
=πrnr/360
=2πrn/360×1/2r
=πrn/180×1/2r
所以:S扇=rL/2
还可以是S扇=n/360πr&sup2。
(n为圆心角的度数,L为该扇形对应的弧长。)
圆锥的表面积=圆锥的侧面积+底面圆的面积
其中:圆锥体的侧面积=πRL
圆锥体的全面积=πRl+πR2
π为 圆周率≈3.14
R为圆锥体底面圆的半径
L为圆锥的母线长 我们把连接圆锥顶点和底面圆周上任意一点的线段叫作圆锥的母线
(注意:不是圆锥的高)是展开扇形的边长
n圆锥 圆心角=r/l*360 360r/l
侧面展开图的圆心角求法:n=360r/R=πRr或2πr=nπr/180 n=360r/R 。如果题目中有切线,经常用的辅助线是链接圆心和切点的 半径,得到直角,再用相关知识解题。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值