图卷积的理解

如图所示:

 

圆圈中的就是最核心的区别。如果没有这部分内容,深度学习过程等同于MLP。而这部分本质上是图卷积,将邻居节点的信息进行聚合。因为核心思想:

简而言之:利用『边的信息』对『节点信息』进行『聚合』从而生成新的『节点表示』 

如图所示:

 训练过程中,每一层都有embedding向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值