如图所示:
圆圈中的就是最核心的区别。如果没有这部分内容,深度学习过程等同于MLP。而这部分本质上是图卷积,将邻居节点的信息进行聚合。因为核心思想:
简而言之:利用『边的信息』对『节点信息』进行『聚合』从而生成新的『节点表示』
如图所示:
训练过程中,每一层都有embedding向量。
如图所示:
圆圈中的就是最核心的区别。如果没有这部分内容,深度学习过程等同于MLP。而这部分本质上是图卷积,将邻居节点的信息进行聚合。因为核心思想:
简而言之:利用『边的信息』对『节点信息』进行『聚合』从而生成新的『节点表示』
如图所示:
训练过程中,每一层都有embedding向量。