赛题理解
- 赛题名称:零基础入门CV之街道字符识别
- 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。
为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。
1.1 学习目标
- 理解赛题背景和赛题数据
- 完成赛题报名和数据下载,理解赛题的解题思路
1.2 赛题数据
赛题以街道字符为为赛题数据,数据集报名后可见并可下载,该数据来自收集的SVHN街道字符,并进行了匿名采样处理。
需要注意的是本赛题需要选手识别图片中所有的字符,为了降低比赛难度,我们提供了训练集、验证集和测试集中所有字符的位置框。
数据标签
每张图片将给出对于的编码标签,和具体的字符框的位置(训练集、测试集和验证集都给出字符位置),可用于模型训练:
Field | Description | |
---|---|---|
top | 左上角坐标X | |
height | 字符高度 | |
left | 左上角最表Y | |
width | 字符宽度 | |
label | 字符编码 |
在比赛数据(训练集、测试集和验证集)中,同一张图片中可能包括一个或者多个字符,因此在比赛数据的JSON标注中,会有两个字符的边框信息。
测评指标
Score=编码识别正确的数量/测试集图片数
以编码整体识别准确率为评价指标。任何一个字符错误都为错误
读取数据
import json
train_json = json.load(open('../input/train.json'))
# 数据标注处理
def parse_json(d):
arr = np.array([
d['top'], d['height'], d['left'], d['width'], d['label']
])
arr = arr.astype(int)
return arr
img = cv2.imread('../input/train/000000.png')
arr = parse_json(train_json['000000.png'])
plt.figure(figsize=(10, 10))
plt.subplot(1, arr.shape[1]+1, 1)
plt.imshow(img)
plt.xticks([]); plt.yticks([])
for idx in range(arr.shape[1]):
plt.subplot(1, arr.shape[1]+1, idx+2)
plt.imshow(img[arr[0, idx]:arr[0, idx]+arr[1, idx],arr[2, idx]:arr[2, idx]+arr[3, idx]])
plt.title(arr[4, idx])
plt.xticks([]); plt.yticks([])
解题思路
赛题本质是分类问题,需要对图片的字符进行识别。但赛题给定的数据图片中不同图片中包含的字符数量不等,这里需要对不定长字符串进行识别,分以下三种思路
- 简单入门思路:定长字符识别
将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。
因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。 - 专业字符识别思路:不定长字符识别
在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。
在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子 - 专业分类思路:检测再识别
在赛题数据中已经给出了训练集、验证集中所有图片中字符的位置,因此可以首先将字符的位置进行识别,利用物体检测的思路完成。此种思路需要参赛选手构建字符检测模型,对测试集中的字符进行识别。选手可以参考物体检测模型SSD或者YOLO来完成。