整体思路
1、结合目标检测的相关算法进行改进
U-net连接浅层网络(针对小目标的生成);Centernet的高斯掩码。
2、不需要纠结监督信息的问题,是否加入温度信息(如何加入温度信息)需要考虑
3、将目标抠出来单独进行评估、训练很有必要
制作灰度图mask
材质分割相关/生成灰度图Mask.py
生成出来的效果不太好,如下:
用opencv的时候注意下处理图片,读入的时候默认是uint8类型,转成float后再处理要正常的多。
直接平均效果不好。
【使用:材质分割相关/生成灰度图Mask3.py,效果如下】
之前因为mask_car有白边,所以效果一直不行
/pytorch-CycleGAN-and-pix2pix-master/datasets/visdrone_4181_daytime/mask_MultiGray2/
制作mask
把弱光场景、光源不均衡场景去掉
最终得到4181张图片,分成三类mask:汽车、绿色植物、路面及其他建筑物
cv2.threshold()
cv2.threshold (源图片, 阈值, 填充色, 阈值类型)
Args:
src:源图片,必须是单通道
thresh:阈值,取值范围0~255
maxval:填充色,取值范围0~255
type:阈值类型,具体见下表
在HSV空间提取图片的绿色部分
# 读入RGB图像
rgb_image = cv2.imread(img_pth)
# 提取绿色分量
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
hsv = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower_green, upper_green) # lower20===>0,upper200==>0,
对目标的多边形矩阵进行填充
# 绘制填充的图
cv2.fillPoly(demo,[points_],(255,0,0))