【论文阅读】RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects

RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects

Abstract

Radar provides complementary information in the form of Doppler velocity.

propose a new solution that exploits both LiDAR and Radar sensors for perception.

1 Introduction

cameras capture rich appearance features, LiDAR provides direct and accurate 3D measurements.
Challenges:

  • sparsity of LiDAR measurements (e.g., at long range)
  • sensor’s sensitivity to weather (e.g., fog, rain and snow)
  • estimating their velocities is also of vital importance.
  • cameras and Lidar provides static information only.

Radar’s limitations:

  • data is very sparse (typically much more so than LiDAR)
  • the measurements are ambiguous in terms of position and velocity
  • the readings lack tangential information and often contain false positives

What this paper do:

  1. design a novel neural network architecture, dubbed RadarNet, which can exploit both LiDAR and Radar to provide accurate detections and velocity estimates for the actors in the scene.
  2. propose a multi-level fusion scheme that can fully exploit both geomet- ric and dynamic information of Radar data.

Steps:

  1. first fuse Radar data with LiDAR point clouds via a novel voxel-based early fusion approach to leverage the Radar’s long sensing range.
  2. Furthermore, after we get object detections, we fuse Radar data again via an attention-based late fusion approach to leverage the Radar’s velocity readings.

attention module transforming the 1D radial velocities from Radar to accurate 2D object velocity estimates.

2 Related Work

3 Review of LiDAR and Radar Sensors

LiDAR (light detection and ranging) sensors can be divided into three main types: spinning LiDAR(旋转激光雷达), solid state LiDAR(固态激光雷达), and flash LiDAR(闪光激光雷达).
In this paper we focus on the most common type: spinning LiDAR. This type of LiDAR emits and receives laser light pulses in 360◦ and exploits the time of flight (ToF) to calculate the distance to the obstacles.

radar outputs can be organized in three different levels:

  1. raw data in the form of time-frequency spectrograms(频谱图)
  2. clusters from applying DBSCAN [12] or CFAR [37] on raw data=> this paper use this, for its good balance between information richness and noise
  3. tracks from performing object tracking on the clusters

denote Radar target:
Q = (q,v∥,m,t) => a vector

  1. q = (x,y) : 2D position in BEV
  2. v∥ : scalar value representing the radial velocity
  3. m : binary value indicating whether the target is moving or not
  4. t : timestamp

advantages and disadvantages of Radar:
good: instantaneous(瞬间) velocity measurements and is robust to various weather conditions.
bad: low resolution and thus it is difficult to detect small objects

attention:
It is also worth noting that the objects’ real-world velocities (2D vectors in BEV) are ambiguous given only the radial velocity. Therefore we need to additionally estimate the tangential velocity or the 2D velocity direction in order to properly utilize the radial velocity.

4 Exploiting LiDAR and Radar for Robust Perception

early fusion and late fusion:
early fusion learns joint representations from both sensor observations;
late fusion refines object velocities via an attention-based association and aggregation mechanism between object detections and Radar targets.
early fusion exploits the position and density information of Radar targets, late fusion is designed to explicitly exploit the Radar’s radial velocity evidence.

4.1 Exploiting Geometric Information via Early Fusion

  1. LiDAR Voxel Representation
  2. Radar Voxel Representation
  3. Early Fusion: same BEV voxel size, concatenating them together along the channel dimension.

4.2 Detection Network

  1. Backbone Network 骨干网
    We adopt the same backbone network architecture as PnPNet.
    composed of three initial convolution layers, three con- secutive multi-scale inception blocks [40], and a feature pyramid network.
  2. Detection Header
    a fully-convolutional detection header,consists of a classification branch and a regression branch.

4.3 Exploiting Dynamic Information via Late Fusion

two tasks:
(1) association of each Radar target with the correct object detection for velocity alignment;
(2) aggregation to combine the velocity estimates from detection and associated Radar targets robustly.

late fusion is performed on dynamic Radar targets only.

  1. Pairwise Detection-Radar Association:
    formulas in paper
    Multi-Layer Perceptron (MLP)
  2. Velocity Aggregation

4.4 Learning and Inference

NMS?

5 Experimental Evaluation

5.1 Datasets and Evaluation Metrics

  1. nuScenes:
    1 LiDAR and 5 Radars, with object labels at 2Hz
    cars and motorcycles, as their velocities have high variance

parameters:

  • Average Precision (AP)
    final AP is averaged over four different distance thresholds (0.5m, 1m, 2m and 4m)
  • Average Velocity Error (AVE)
  1. DenseRadar:
    a self-collected dataset to show the advantage of Radar over LiDAR is its longer sensing range.

parameters:

  • AP
  • Average Dynamic Velocity Error (ADVE) on dynamic objects only

5.2 Implementation Details

trained a two-class model on nuScenes with a shared backbone network and class- specific detection headers.
trianed a single-class model on DenseRadar.

5.3 Comparison with the State-of-the-Art

Precision output: Table 2. Comparison with the state-of-the-art on nuScenes validation set

Q: why CBGS performs so well, as it is Lidar-based function?

5.4 Ablation Study 消融研究

build a strong baseline with carefully designed heuristics
compare peformance of early fusion, late fusion, etc.

Table 3. Ablation study on nuScenes validation set
Table 4. Ablation study on DenseRadar validation set

5.5 Fine-Grained Analysis

5.6 Qualitative Results

Fig. 5

(1) the association is sparse in that only relevant Radar targets are associated;
(2) the association is quite robust to noisy locations of the Radar targets;
(3) the model captures the uncertainty of Radar targets very well.

6 Conclusion

proposed a new method to exploit Radar in combination with LiDAR for robust perception of dynamic objects in self-driving.

use a voxel(体素)-based early fusion approach.
propose an attention-based late fusion approach to exploit dynamic information.

dubbed RadarNet, features a voxel- based early fusion and an attention-based late fusion, which learn from data to exploit both geometric and dynamic information of Radar data.

exploiting Radar improves the perception capabilities of detecting faraway objects and understanding the motion of dynamic objects.

Words in paper

voxel |ˈväksəl| 体素
ambiguities 歧义
dubbed 配音
geometric 几何的
exploit 开发
sparsity 稀疏性
appealing 吸引人的
Doppler effect 多普勒效应
typically 通常
tangential 切向的
novel 新颖的
leverate 杠杆n,利用v
surpass 超越v
perceiving 知觉
notation 符号n
intuitions 直觉
consecutive 连续的
sweep 扫,扫荡,扫视v
dirt 污垢
exhaust plumes 排气羽流
electromagnetic 电磁
spectrograms 频谱图
instantaneous 瞬间
modulo 模数
aliasing 混叠
clutter 杂乱无章
modalities 方式
granularities 粒度
consecutive 连续的
inception 开始
pyramid 金字塔
by stride of 大步前进
regression 回归
back-projection 反射,反投影
exaggerated 夸张的
aggregation 聚合
nontrivial 不平凡
capped 封顶
omitted for brevity 为简洁省略
scalar 标量
post-processing 后期处理
kinematic 运动学
imbalance 不平衡
heuristic 启发式
counterpart 竞争对手
cross-validation 交叉验证
depicted 描绘的
temporal change 时间变化

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Bert是一种在自然语言处理中被广泛使用的模型,其在各种任务中表现出了出色的性能。然而,对于方面级情感分析,Bert并不直接适用。因此,需要对Bert进行利用,并通过修改和扩展来适应这一任务。 端到端(end-to-end)的方面级情感分析是指通过一个模型直接从文本中提取方面和情感信息。为了利用Bert进行端到端的方面级情感分析,首先需要对数据进行预处理,并将其转换成Bert模型所接受的输入格式。这包括将文本分段、添加特殊标记以及填充序列等操作。 在Bert模型的基础上,需要添加相关的层来实现方面级情感分析。一种常见的方法是利用注意力机制来捕获方面词与其他词之间的关系。通过计算不同词之间的注意力权重,可以将方面词的相关信息传递给其他词,从而更好地理解整个文本。另外,也可以添加一些分类层来预测每个方面的情感。 为了更好地利用Bert,还可以使用领域特定的语料库来进行预训练。通过在大规模的语料库上进行预训练,模型可以更好地理解特定领域的文本,并提升方面级情感分析的性能。 此外,还可以通过调整Bert模型的超参数来进一步改善性能。例如,可以调整学习率、批大小和训练周期等超参数,以获得更好的结果。 总之,“exploiting bert for end-to-end aspect-based sentiment analysis”意味着通过对Bert进行修改和扩展,将其应用于端到端的方面级情感分析任务中,以提升模型的性能和效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值