基本矩阵运算法则之笔记

0. 定义

A = ( a i × j ) ; B = ( b i × j ) i = 1... m ; j = 1... n \begin{aligned} A &= \left(a_{i \times j}\right); \\ B &= \left(b_{i \times j}\right) \\ i&=1...m; \\ j &= 1...n \end{aligned} ABij=(ai×j);=(bi×j)=1...m;=1...n

1. 矩阵加法法则

( i )   A + B = B + A ( i i )   ( A + B ) + C = A + ( B + C ) ( i i )   负 矩 阵 : − A = ( − a i j ) ; A + ( − A ) = O ; A + ( − B ) = A − B \begin{aligned} &(i) \, A + B = B + A \\ &(ii) \, (A + B) + C = A + (B + C) \\ &(ii) \, 负矩阵: \\ &-A = (-a_{ij}); \\ &A + (-A) = O; \\ &A + (-B) = A - B \end{aligned} (i)A+B=B+A(ii)(A+B)+C=A+(B+C)(ii):A=(aij);A+(A)=O;A+(B)=AB

2. 数与矩阵相乘

( i )   ( λ μ ) A = λ ( μ A ) ( i i )   ( λ + μ ) A = λ A + μ A ( i i i )   λ ( A + B ) = λ A + λ B \begin{aligned} &(i) \, (\lambda\mu)A = \lambda(\mu A)\\ &(ii) \, (\lambda + \mu)A = \lambda A + \mu A \\ &(iii) \, \lambda (A + B) = \lambda A + \lambda B \end{aligned} (i)(λμ)A=λ(μA)(ii)(λ+μ)A=λA+μA(iii)λ(A+B)=λA+λB

3. 矩阵与矩阵相乘

3.1 定义

A = ( a m × s ) A = (a_{m \times s}) A=(am×s) B = ( b s × n ) B = (b_{s \times n}) B=(bs×n) ,则 A A A B B B的乘积为: C = A B C = AB C=AB
注意:

  • 只有第一个矩阵的列数和第二个矩阵的行数相同时,才可以相乘;
  • 注意相乘的顺序(左乘和右乘)
  • A B AB AB 不一定等于 B A BA BA, 只有两者可交换时,才相等。
  • 对于两个n阶方阵 A , B A, B A,B,若 A B = B A AB = BA AB=BA,则称方阵 A A A B B B可交换

3.2 乘法法则

( i )   ( A B ) C = A ( B C ) ( i i )   λ ( A B ) = ( λ A ) B = A ( λ B ) ( i i i )   A ( B + C ) = A B + A C , ( B + C ) A = B A + C A ( i v )   E A = A E = A , ( λ E ) A = λ A = A ( λ E ) \begin{aligned} & (i) \, (AB)C = A(BC) \\ & (ii) \, \lambda (AB) = (\lambda A)B = A(\lambda B) \\ & (iii) \, A(B + C) = AB + AC, (B + C)A = BA + CA \\ & (iv) \, EA = AE = A, (\lambda E)A = \lambda A = A (\lambda E) \end{aligned} (i)(AB)C=A(BC)(ii)λ(AB)=(λA)B=A(λB)(iii)A(B+C)=AB+AC,(B+C)A=BA+CA(iv)EA=AE=A,(λE)A=λA=A(λE)
注意

  • 只有方阵的幂才有意义: A k A^k Ak

4. 矩阵的转置

( i )   ( A T ) T = A ( i i )   ( A + B ) T = A T + B T ( i i i )   ( λ A ) T = λ A T ( v i )   ( A B ) T = B T A T ( v )   对 称 矩 阵 : A T = A \begin{aligned} &(i) \, (A^T)^T = A \\ &(ii) \, (A + B)^T = A^T + B^T \\ &(iii) \, (\lambda A)^T = \lambda A^T \\ &(vi) \, (AB)^T = B^TA^T \\ &(v) \, 对称矩阵:A^T = A \end{aligned} (i)(AT)T=A(ii)(A+B)T=AT+BT(iii)(λA)T=λAT(vi)(AB)T=BTAT(v)AT=A

5. 方阵的行列式

5.1 定义

  • 矩阵是有一定顺序的数表;行列式是一个数。
  • n阶方阵的行列式: ∣ A ∣ 或 d e t A |A| 或 det A AdetA

5.2 运算法则

( i )   ∣ A T ∣ = ∣ A ∣ ( i i )   ∣ λ A ∣ = λ n ∣ A ∣ ( i i i )   ∣ A B ∣ = ∣ A ∣ ∣ B ∣ \begin{aligned} &(i) \, |A^T| = |A| \\ &(ii) \, |\lambda A| = \lambda^n|A| \\ &(iii) \, |AB| = |A||B| \end{aligned} (i)AT=A(ii)λA=λnA(iii)AB=AB
伴随矩阵:由行列式 ∣ A ∣ |A| A的各个元素的代数余子式 A i j A_{ij} Aij构成。
A ∗ = { A 11 A 21 − A n 1 A 12 A 22 − A n 2 ∣ ∣ ∣ ∣ A 1 n A 2 n − A n n } ; A i j = ( − 1 ) i + j M i j A^* = \left\{ \begin{matrix} A_{11} & A_{21} & - & A_{n1}\\ A_{12} & A_{22} & - & A_{n2} \\ | & | & | & | \\ A_{1n} & A_{2n} & - & A_{nn} \end{matrix} \right\}; A_{ij} = (-1)^{i+j}M_{ij} A=A11A12A1nA21A22A2nAn1An2Ann;Aij=(1)i+jMij
( v i ) A ∗ A = A A ∗ = ∣ A ∣ E (vi) A^*A = AA^* = |A|E (vi)AA=AA=AE

6. 逆矩阵

对于n阶矩阵 A A A,如果有一个n阶矩阵 B B B,使
A B = B A = E AB=BA=E AB=BA=E
则, A A A可逆,且记为: A − 1 = B A^{-1}=B A1=B(逆矩阵是唯一的)

6.1 定理 1-2

n 阶方阵可逆的充分必要条件为: ∣ A ∣ ≠ 0 |A| \neq 0 A=0, 且:
A − 1 = 1 ∣ A ∣ A ∗ , A ∗ 为 伴 随 矩 阵 A^{-1} = \frac{1}{|A|} A^*, A^*为伴随矩阵 A1=A1A,A

  • ∣ A ∣ ≠ 0 |A| \neq 0 A=0,则 A A A为奇异矩阵,否则为非奇异矩阵;
  • 可逆矩阵为非奇异矩阵
  • 推论:若 A B = E 或 ( B A = E ) AB = E 或 (BA = E) AB=EBA=E,则 B = A − 1 B=A^{-1} B=A1

6.2 运算法则

(i) 若 A A A可逆,则 A − 1 A^{-1} A1亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1} =A (A1)1=A
(ii)若 A A A可逆,数 λ ≠ 0 \lambda \neq 0 λ=0,则 λ A \lambda A λA可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1} = \frac{1}{\lambda}A^{-1} (λA)1=λ1A1
(iii)若 A , B A,B A,B为同阶矩阵且可逆,则 A B AB AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
(iv)若 A A A可逆,则 A T A^T AT亦可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
栈是一种数据结构,它可以存储一组元素,并支持在一端插入和删除元素。在四则运算中,可以使用栈来实现表达式的求解。 表达式求解的基本思路是,将中缀表达式转换为后缀表达式,然后使用栈对后缀表达式进行求解。 中缀表达式是人类常用的表达式格式,例如 1 + 2 * 3。后缀表达式是一种更适合计算机处理的表达式格式,也称为逆波兰表达式,例如 1 2 3 * +。 中缀表达式转换为后缀表达式的过程可以使用栈来实现。具体步骤如下: 1. 新建一个空栈和一个空列表。 2. 从左到右扫描中缀表达式的每个元素。如果当前元素是数字,将其加入到列表中。 3. 如果当前元素是运算符,则将其弹出栈,直到栈顶元素的优先级低于或等于当前元素,并将弹出的元素加入到列表中。然后将当前元素入栈。 4. 如果当前元素是左括号,直接将其入栈。 5. 如果当前元素是右括号,则将栈顶元素弹出并加入到列表中,直到遇到左括号。左括号不加入列表,直接弹出。 6. 扫描完中缀表达式后,将栈中剩余的元素依次弹出并加入到列表中。 将中缀表达式转换为后缀表达式后,可以使用栈对后缀表达式进行求解。具体步骤如下: 1. 新建一个空栈。 2. 从左到右扫描后缀表达式的每个元素。如果当前元素是数字,将其入栈。 3. 如果当前元素是运算符,则弹出栈顶的两个元素,并根据当前元素进行运算。将运算结果入栈。 4. 扫描完后缀表达式后,栈中剩余的元素即为表达式的最终结果。 使用栈实现四则运算还需要注意一些细节,例如运算符的优先级、括号的处理等。但基本思路就是如上所述。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值