数学小抄: Gaussian Product

前言

本篇博客可以看作是上一篇Gaussian基础操作博客的续篇。在这篇博客中我将会摘抄一个关于Gaussian Product的推导过程。Gaussian Product是两个Gaussian分布函数通过乘积合而为一的操作,在状态估计一书中有过介绍。本篇博客主要集中于其系数的推导。

正文

Gaussian Product
e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) = η ∏ k = 1 K e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) \rm{exp}(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})) = \boldsymbol{\eta}\prod^K_{k=1}\rm{exp}(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})) exp(21(xμ)TΣ1(xμ))=ηk=1Kexp(21(xμ)TΣ1(xμ))
其中, Σ − 1 = ∑ k = 1 K Σ k − 1 \Sigma^{-1}=\sum^K_{k=1}\Sigma^{-1}_k Σ1=k=1KΣk1, Σ − 1 μ 2 = ∑ k = 1 N Σ k − 1 μ k 2 \Sigma^{-1}\mu^2=\sum^N_{k=1}\Sigma^{-1}_k\mu^2_k Σ1μ2=k=1NΣk1μk2
比如:
e x p ( ( x − μ 1 ) Σ 1 − 1 ( x − μ 1 ) ) e x p ( ( x − μ 2 ) − 1 Σ 2 − 1 ( x − μ 2 ) ) = e x p ( Σ 1 − 1 x 2 − 2 Σ 1 − 1 μ 1 + Σ 1 − 1 μ 1 2 + Σ 2 − 1 x 2 − 2 Σ 2 − 1 μ 2 + Σ 2 − 1 μ 2 2 ) = e x p ( ( Σ 1 − 1 + Σ 2 − 1 ) x 2 − ( 2 Σ 1 − 1 μ 1 + 2 Σ 2 − 1 μ 2 ) x + Σ 1 − 1 μ 1 2 + Σ 2 − 1 μ 2 2 ) \begin{split} &\rm{exp}((x-\mu_1)\Sigma^{-1}_1(x-\mu_1))\rm{exp}((x-\mu_2)^{-1}\Sigma^{-1}_2(x-\mu_2))\\ &=\rm{exp}(\Sigma^{-1}_1x^2-2\Sigma^{-1}_1\mu_1+\Sigma^{-1}_1\mu^2_1+\Sigma^{-1}_2x^2-2\Sigma^{-1}_2\mu_2+\Sigma^{-1}_2\mu^2_2)\\ &=\rm{exp}((\Sigma^{-1}_1+\Sigma^{-1}_2)x^2-(2\Sigma^{-1}_1\mu_1+2\Sigma^{-1}_2\mu_2)x+\Sigma^{-1}_1\mu^2_1+\Sigma^{-1}_2\mu^2_2) \end{split} exp((xμ1)Σ11(xμ1))exp((xμ2)1Σ21(xμ2))=exp(Σ11x22Σ11μ1+Σ11μ12+Σ21x22Σ21μ2+Σ21μ22)=exp((Σ11+Σ21)x2(2Σ11μ1+2Σ21μ2)x+Σ11μ12+Σ21μ22)
对比: e x p ( ( x − μ 1 ) Σ 1 − 1 ( x − μ 1 ) ) = e x p ( Σ 1 − 1 x 2 − 2 Σ 1 − 1 μ 1 + Σ 1 − 1 μ 1 2 ) \rm{exp}((x-\mu_1)\Sigma^{-1}_1(x-\mu_1))=\rm{exp}(\Sigma^{-1}_1x^2-2\Sigma^{-1}_1\mu_1+\Sigma^{-1}_1\mu^2_1) exp((xμ1)Σ11(xμ1))=exp(Σ11x22Σ11μ1+Σ11μ12)
有:
Σ − 1 = Σ 1 − 1 + Σ 2 − 1 \Sigma^{-1}=\Sigma^{-1}_1+\Sigma^{-1}_2 Σ1=Σ11+Σ21, Σ − 1 μ 2 = Σ 1 − 1 μ 1 2 + Σ 2 − 1 μ 2 2 \Sigma^{-1}\mu^2=\Sigma^{-1}_1\mu^2_1+\Sigma^{-1}_2\mu^2_2 Σ1μ2=Σ11μ12+Σ21μ22
而中间的那一项通过下面的配方公式有:
( x − k ) 2 = x 2 − 2 x k + k 2 A x 2 + B x + C = A ( x 2 + B A x + C A ) B A = − 2 k k = − B 2 A C A + δ = B 2 4 A 2 δ = B 2 4 A 2 − C A A x 2 + B x + C = A ( x 2 − k 2 ) − A δ \begin{split} (x-k)^2&=x^2-2xk+k^2\\ Ax^2+Bx+C &= A(x^2+\frac{B}{A}x+\frac{C}{A})\\ \end{split} \\ \begin{split} \frac{B}{A}&=-2k\\ k&=\frac{-B}{2A}\\ \frac{C}{A}+\delta &=\frac{B^2}{4A^2}\\ \delta &= \frac{B^2}{4A^2}-\frac{C}{A} \end{split} \\ \begin{split} Ax^2+Bx+C&=A(x^2-k^2)-A\delta \end{split} (xk)2Ax2+Bx+C=x22xk+k2=A(x2+ABx+AC)ABkAC+δδ=2k=2AB=4A2B2=4A2B2ACAx2+Bx+C=A(x2k2)Aδ
A = Σ 1 − 1 + Σ 2 − 1 B = − 2 ( Σ 1 − 1 μ 1 + Σ 2 − 1 μ 2 ) C = Σ 1 − 1 μ 1 2 + Σ 2 − 1 μ 2 2 k = − B 2 A = μ 1 / σ 1 2 + μ 2 / σ 2 2 1 / σ 1 2 + 1 / σ 2 2 A δ = B 2 4 A − C B 2 4 A = 4 ( μ 1 2 / σ 1 4 + μ 2 2 / σ 2 4 + 2 μ 1 μ 2 / σ 1 2 σ 2 2 ) 4 ( 1 / σ 1 2 + 1 / σ 2 2 ) = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ( μ 1 2 / σ 1 4 + μ 2 2 / σ 2 4 + 2 μ 1 μ 2 / σ 1 2 σ 2 2 ) = 1 σ 1 2 + σ 2 2 ( μ 1 2 σ 2 4 / σ 1 2 σ 2 2 + μ 2 2 σ 1 4 / σ 1 2 σ 2 2 + 2 μ 1 μ 2 σ 1 2 σ 2 2 / σ 1 2 σ 2 2 ) C = μ 1 2 / σ 1 2 + μ 2 2 / σ 2 2 = μ 1 2 σ 2 2 / σ 1 2 σ 2 2 + μ 2 2 σ 2 2 / σ 1 2 σ 2 2 = 1 σ 1 2 σ 2 2 1 σ 1 2 + σ 2 2 ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) ( σ 1 2 + σ 2 2 ) = 1 σ 1 2 σ 2 2 1 σ 1 2 + σ 2 2 ( μ 1 2 σ 1 2 σ 2 2 + μ 1 2 σ 2 4 + μ 2 2 σ 1 4 + μ 2 2 σ 1 2 σ 2 2 ) B 2 4 A − C = − 1 σ 1 2 σ 2 2 1 σ 1 2 + σ 2 2 ( μ 1 2 + μ 2 2 − 2 μ 1 μ 2 ) σ 1 2 σ 2 2 = − 1 σ 1 2 + σ 2 2 ( μ 1 2 + μ 2 2 − 2 μ 1 μ 2 ) A δ = − 1 σ 1 2 + σ 2 2 ( μ 1 + μ 2 ) 2 \begin{split} A &= \Sigma^{-1}_1+\Sigma^{-1}_2\\ B &= -2(\Sigma^{-1}_1\mu_1+\Sigma^{-1}_2\mu_2)\\ C &= \Sigma^{-1}_1\mu^2_1+\Sigma^{-1}_2\mu^2_2\\ k &= \frac{-B}{2A} = \frac{\mu_1/\sigma^2_1+\mu_2/\sigma^2_2}{1/\sigma^2_1+1/\sigma^2_2}\\ A\delta &= \frac{B^2}{4A}-C\\ \frac{B^2}{4A}&=\frac{4(\mu^2_1/\sigma^4_1+\mu^2_2/\sigma^4_2+2\mu_1\mu_2/\sigma^2_1\sigma^2_2)}{4(1/\sigma^2_1+1/\sigma^2_2)} \\ &=\frac{\sigma^2_1\sigma^2_2}{\sigma^2_1+\sigma^2_2}(\mu^2_1/\sigma^4_1+\mu^2_2/\sigma^4_2+2\mu_1\mu_2/\sigma^2_1\sigma^2_2)\\ &=\frac{1}{\sigma^2_1+\sigma^2_2}(\mu^2_1\sigma^4_2/\sigma^2_1\sigma^2_2+\mu^2_2\sigma^4_1/\sigma^2_1\sigma^2_2+2\mu_1\mu_2\sigma^2_1\sigma^2_2/\sigma^2_1\sigma^2_2)\\ C&=\mu^2_1/\sigma^2_1+\mu^2_2/\sigma^2_2\\ &=\mu^2_1\sigma^2_2/\sigma^2_1\sigma^2_2+\mu^2_2\sigma^2_2/\sigma^2_1\sigma^2_2\\ &=\frac{1}{\sigma^2_1\sigma^2_2}\frac{1}{\sigma^2_1+\sigma^2_2}(\mu^2_1\sigma^2_2+\mu^2_2\sigma^2_1)(\sigma^2_1+\sigma^2_2)\\ &=\frac{1}{\sigma^2_1\sigma^2_2}\frac{1}{\sigma^2_1+\sigma^2_2}(\mu^2_1\sigma^2_1\sigma^2_2+\mu^2_1\sigma^4_2+\mu^2_2\sigma^4_1+\mu^2_2\sigma^2_1\sigma^2_2)\\ \frac{B^2}{4A}-C&=-\frac{1}{\sigma^2_1\sigma^2_2}\frac{1}{\sigma^2_1+\sigma^2_2}(\mu^2_1+\mu^2_2-2\mu_1\mu_2)\sigma^2_1\sigma^2_2\\ &=-\frac{1}{\sigma^2_1+\sigma^2_2}(\mu^2_1+\mu^2_2-2\mu_1\mu_2)\\ A\delta &= -\frac{1}{\sigma^2_1+\sigma^2_2}(\mu_1+\mu_2)^2 \end{split} ABCkAδ4AB2C4AB2CAδ=Σ11+Σ21=2(Σ11μ1+Σ21μ2)=Σ11μ12+Σ21μ22=2AB=1/σ12+1/σ22μ1/σ12+μ2/σ22=4AB2C=4(1/σ12+1/σ22)4(μ12/σ14+μ22/σ24+2μ1μ2/σ12σ22)=σ12+σ22σ12σ22(μ12/σ14+μ22/σ24+2μ1μ2/σ12σ22)=σ12+σ221(μ12σ24/σ12σ22+μ22σ14/σ12σ22+2μ1μ2σ12σ22/σ12σ22)=μ12/σ12+μ22/σ22=μ12σ22/σ12σ22+μ22σ22/σ12σ22=σ12σ221σ12+σ221(μ12σ22+μ22σ12)(σ12+σ22)=σ12σ221σ12+σ221(μ12σ12σ22+μ12σ24+μ22σ14+μ22σ12σ22)=σ12σ221σ12+σ221(μ12+μ222μ1μ2)σ12σ22=σ12+σ221(μ12+μ222μ1μ2)=σ12+σ221(μ1+μ2)2
回代有:
1 2 π σ 1 σ 2 e x p ( − 1 2 ( x − μ 1 ) 2 σ 1 2 ) e x p ( − 1 2 ( x − μ 2 ) 2 σ 2 2 ) = 1 2 π σ 1 σ 2 e x p ( A δ / 2 ) e x p ( − 1 2 ( x − μ ) 2 σ 2 2 ) = 1 2 π 1 ( 1 / σ 1 2 + 1 / σ 2 2 ) − 1 / 2 e x p ( − 1 2 ( x − μ ) 2 σ 2 ) 1 2 π 1 σ 1 2 + σ 2 2 e x p ( A δ / 2 ) \begin{split} &\frac{1}{2\pi \sigma_1 \sigma_2}\rm{exp}(-\frac{1}{2}\frac{(x-\mu_1)^2}{\sigma^2_1})\rm{exp}(-\frac{1}{2}\frac{(x-\mu_2)^2}{\sigma^2_2})\\ &=\frac{1}{2\pi \sigma_1 \sigma_2}\rm{exp}(A\delta/2)\rm{exp}(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2_2})\\ &=\frac{1}{\sqrt{2\pi}}\frac{1}{(1/\sigma^2_1+1/\sigma^2_2)^{-1/2}}\rm{exp}(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2})\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{\sigma^2_1+\sigma^2_2}}\rm{exp}{(A\delta/2)} \end{split} 2πσ1σ21exp(21σ12(xμ1)2)exp(21σ22(xμ2)2)=2πσ1σ21exp(Aδ/2)exp(21σ22(xμ)2)=2π 1(1/σ12+1/σ22)1/21exp(21σ2(xμ)2)2π 1σ12+σ22 1exp(Aδ/2)
其中:
1 ( 1 / σ 1 2 + 1 / σ 2 2 ) − 1 / 2 1 σ 1 2 + σ 2 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ⋅ σ 1 2 + σ 2 2 = σ 1 2 σ 2 2 = σ 1 σ 2 \begin{split} \frac{1}{(1/\sigma^2_1+1/\sigma^2_2)^{-1/2}}\frac{1}{\sqrt{\sigma^2_1+\sigma^2_2}} &=\frac{\sqrt{\sigma^2_1\sigma^2_2}}{\sqrt{\sigma^2_1+\sigma^2_2}}\cdot \sqrt{\sigma^2_1+\sigma^2_2}=\sqrt{\sigma^2_1\sigma^2_2}=\sigma_1\sigma_2 \end{split} (1/σ12+1/σ22)1/21σ12+σ22 1=σ12+σ22 σ12σ22 σ12+σ22 =σ12σ22 =σ1σ2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值