理解Tensor张量

本文介绍了张量在深度学习中的基本概念,包括张量的定义、形状、维度和数值类型。通过实例展示了0维到3维张量,并以蜜蜂箱为例,生动解释了不同维度张量的直观理解。此外,还提到了张量在Python中的实现。
摘要由CSDN通过智能技术生成

理解Tensor张量

深度学习的底层是对张量(Tensor)的计算,因此有必要充分理解张量(Tensor)。

张量的理解

可以将张量(Tensor)理解为一个装数值的容器(实际上是多维数组),容器的属性包括:

  • 容器的形状(Shape)
  • 容器的维度/轴(Rank/Axis)
  • 容器内数值的类型(Python中为dtype)

下图展示了从1维张量到6维张量:

张量tensor

说明:

  • 0维张量(0d-tensor)为标量(Scalar),或数值(Number)
  • 1维张量(1d-tensor)为向量(Vector),对应计算机术语中的数组(Array),或者序列(Sequence),或者列表(List),或者行(Row),或者列(Column)
  • 2维张量(2d-tensor)为矩阵(Matrix),对应计算机术语中的二维数组,或者表格(Table)
  • 3维张量(3d-tensor)为立方体(Cube),对应计算计术语中的三维数组
  • 4维张量(4d-tensor)可以理解为一排立方体(Cube)
  • 5维张量(5d-tensor)可以理解为多排立方体(Cube)
  • 6维张量(6d-tensor)可以理解为堆起来的立方体(Cube)

再用蜜蜂箱的例子来帮助理解:

蜜蜂箱张量

从巢孔,到巢框,到蜜蜂箱,不同的容器,都有形状(Shape),有维度/轴(Rank/Axis),都能装蜂蜜(数值类型)。

一个蜜蜂箱就是一个3维张量(立方体),可以放下几片巢框;每片巢框就是一个2维张量(矩阵);巢框由多排巢孔组成,每排巢孔就是一个1维张量(向量);每个巢孔就是一个0维张量(标量)。

把蜜蜂箱排成1排,就是4维张量;多排蜜蜂箱,就是5维张量;把多个蜜蜂箱像集装箱一样堆叠起来,就是6维张量。

不同维度张量的数据

张量 形状 数据集示例
2D张量 (samples, features) 人口统计数据集
文本文档数据集
3D张量 (samples, timestamp, features) 时间序列数据(股票价格数据集)
序列数据(展开0/1矩阵的文本文档数据集)
4D张量 (samples, height, width, channels)
或 (samples, channels, height, width)
图像
5D张量 (samples, frames, height, width, channels)
或(samples,frames, channels, height, width)
视频(视频可以理解为由多帧图像组成)

说明:

  • 上表中,features(特征集)为一个包含多个数值的向量

张量的Python程序

0维张量

import numpy as np

x = np.array(42)
print
要求一个张量的逆,我们通常是指求解其伪逆,因为大多数张量并不是方阵,没有定义的逆矩阵。为了求解一个张量的伪逆,我们可以使用tensorly库中的pinv函数。这个函数可以对任意维度的张量进行伪逆计算。以下是一个示例代码: import tensorly as tl import numpy as np # 创建一个示例张量 a = np.array([[1, 2, 3], [4, 5, 6]]) # 计算张量的伪逆 a_pinv = tl.tensor_pinv(a) # 输出结果 print("伪逆结果:") print(a_pinv) 这段代码中,我们首先导入了tensorly库以及numpy库。然后,我们创建了一个2维的示例张量a。接下来,我们使用tensorly库的tensor_pinv函数计算了张量a的伪逆,并将结果存储在a_pinv变量中。最后,我们输出了伪逆结果。请注意,输出结果的维度与原始张量的维度相同。 希望这个例子能帮助你理解如何计算张量的伪逆。如果你有任何进一步的问题,请随时提问。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [tensorly实现张量的展开及逆过程](https://blog.csdn.net/ljxopencv/article/details/90548827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [libtorch Tensor张量的常用操作总结(1)](https://blog.csdn.net/shandianfengfan/article/details/118348082)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值