tensorflow之4维张量一般含义

本文详细解析了图像张量与滤波器张量的结构,阐述了[个数,高度,宽度,通道数]的图像张量及[卷积核高度,卷积核宽度,图像通道数,卷积核个数]的滤波器张量如何在深度学习中发挥作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[batch_size,height,width, channels]  //图像张量
[个数,高度,宽度,通道数]
[height,width,input_channels,output_channels]   //滤波器张量
[卷积核高度,卷积核宽度,图像通道数,卷积核个数]  //第三维input_channels为input张量的第四维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值