记 ,设消解文字
和
. 同时设
=
,
,于是
=
.
假设 是可满足的,
是满足他的赋值,(在这里,
是合取范式,它被满足,当且仅当
),不妨设
,由于
也满足
,
必有文字满足为1,(由于
,所以
,但是我们需要为1的赋值,所以暂时记为
),
且
,
与
消解掉
,但是并没有消解掉
,所以C中含有
,故
满足C
记 ,设消解文字
和
. 同时设
=
,
,于是
=
.
假设 是可满足的,
是满足他的赋值,(在这里,
是合取范式,它被满足,当且仅当
),不妨设
,由于
也满足
,
必有文字满足为1,(由于
,所以
,但是我们需要为1的赋值,所以暂时记为
),
且
,
与
消解掉
,但是并没有消解掉
,所以C中含有
,故
满足C