记 ,设消解文字 和 . 同时设 = , ,于是 = .
假设 是可满足的, 是满足他的赋值,(在这里, 是合取范式,它被满足,当且仅当 ),不妨设 ,由于 也满足 , 必有文字满足为1,(由于 ,所以 ,但是我们需要为1的赋值,所以暂时记为 ), 且 , 与 消解掉 ,但是并没有消解掉 ,所以C中含有 ,故 满足C
记 ,设消解文字 和 . 同时设 = , ,于是 = .
假设 是可满足的, 是满足他的赋值,(在这里, 是合取范式,它被满足,当且仅当 ),不妨设 ,由于 也满足 , 必有文字满足为1,(由于 ,所以 ,但是我们需要为1的赋值,所以暂时记为 ), 且 , 与 消解掉 ,但是并没有消解掉 ,所以C中含有 ,故 满足C