离散数学,可满足性问题与消解法,定理2.8的证明C1∧C2≈Res(C1,C2)

C=Res(C_{1},C_{2}) ,设消解文字 ll^{c} . 同时设C_{1} =C_{1}^{'}\veel , C_{2}=C_{2}^{'}\vee l^{c} ,于是 C = C_{1}^{'}\vee C_{2}^{'} .

假设 C_{1}\wedge C_{2} 是可满足的, \alpha 是满足他的赋值,(在这里, C_{1}\wedge C_{2} 是合取范式,它被满足,当且仅当 C_{1}=1,C_{2}=1 ),不妨设 \alpha(l)=1 ,由于 \alpha 也满足 C_{2} , C_{2} 必有文字满足为1,(由于 \alpha(l)=1 ,所以 \alpha(l^{c})=0 ,但是我们需要为1的赋值,所以暂时记为 l^{'} ), l^{'} \ne l\alpha (l^{'})=1 , C_{1}^{'}C_{2} 消解掉 l和l^c,得到Res(C_{1},C_{2}) ,但是并没有消解掉 l^{'} ,所以C中含有 l^{'} ,故 \alpha 满足C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值