算法基础--优惠券问题(贪心算法)

本文介绍如何使用贪心算法解决优惠券组合问题,以实现购买商品时使用最少的代金券达到最大价值。通过实例说明算法思路,并提供代码实现,帮助读者理解贪心策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法基础–优惠券问题(贪心算法)

近期某商场由于周年庆,开启了“0元购”活动。活动中,消费者可以通过组合手中的代金券,实现0元购买指定商品。

聪明的小团想要用算法来帮助他快速计算:对于指定价格的商品,使用代金券凑出其价格即可,但所使用的代金券总面额不可超过商品价格。由于代金券数量有限,使用较少的代金券张数则可以实现价值最大化,即最佳优惠。

假设现有100元的商品,而代金券有50元、30元、20元、5元四种,则最佳优惠是两张50元面额的代金券;而如果现有65元的商品,则最佳优惠是两张30元代金券以及一张5元代金券。

请你帮助小团使用一段代码来实现代金券计算。
输入描述:

多组输入输出,读到s=0时结束 输入可以有多个测试样例,每个测试由两行组成。
其中第一行包含一个整数P,表示商品的价格,1≤P≤10000;输入P为0时表示结束。
第二行包含若干整数,使用空格分割。其中第一个整数N(1≤N≤20)表示有多少种代金券,其后跟随M个整数,表示手中持有的代金券面额(1≤N≤1000),每种代金券数量不限。

输出描述:

找到最少张数的代金券,使其面额恰好等于商品价格。输出所使用的代金券数量;
如果有多个最优解,只输出其中一种即可;
如果无解,则需输出“Impossible”。

贪心算法的含义我就不去总结了。毕竟自己也不太理解到位。但在这个例子中我明白了解题的思路。分享给大家,大家结合别人的贪心算法总结一起使用吧。
话不多说,先给代码:

//以上代码为方面提交进行的输入处理
var num = 65;   //组合总金额
var type = 4;   //代金券种类
var money = [50,30,20,5]; //代金券面额
function getResult(num, type, money) {
   
    var dp = [];
    dp[0] = 0;
    for(var i=1;i<=num;i++){
   
        var arr = [];
        for(var j=0;j<money.length;j++){
    
            if(i>=money[j]){
                       //i >= 5时,可进入判定
                arr.push(dp[i-money[j]] + 1);    //dp[i] = infinity
            }
        }
        dp[i] = Math.min(...arr);
    }
    return dp[num] === Infinity?"Impossible":
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值