1.目的
(1)使用openCV函数findContours()搜索图像中的轮廓信息
(2)使用openCV函数drawContours()绘制图像中的轮廓信息
2.部分代码解释
(1)findContours
/*
findContours参数解释
canny_output:输入的二值图像(使用边缘检测算子检测的边缘图像)
contours:边缘值,是一个二维数组,每个轮廓对应一个数组
hirerarchy:和轮廓个数相同,每个轮廓contours[ i ]对应4个hierarchy元素hierarchy[ i ][ 0 ] ~hierarchy[ i ][ 3 ],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,该值设置为负数。
mode:轮廓的检索模式,CV_RETR_TREE建立一个等级树结构的轮廓。
method:轮廓的近似办法,CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
Point:轮廓点的偏移量???
*/
findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
(2)drawContours
/*
drawContours参数解释
drawing:绘制画板
contours:轮廓信息,由findContours给出,
i:第几个轮廓
color:轮廓颜色
2:轮廓线条粗细
8:线条类型
hirerarchy:轮廓层级模式
*/
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
3.完整代码
(1)CommonInclude.h
#ifndef COMMON_INCLUDE
#define COMMON_INCLUDE
#include<iostream>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
#endif
(2)Contours.cpp
#include"CommonInclude.h"
Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/** @function main */
int main( int argc, char** argv )
{
if(argc<2){
cout << "more parameters are required!!!" << endl;
return(-1);
}
src = imread( argv[1], 1 );
if(!src.data){
cout << "error to read image!!!" << endl;
return(-1);
}
//转化成灰度图像
cvtColor( src, src_gray, CV_BGR2GRAY );
//图像平滑
blur( src_gray, src_gray, Size(3,3) );
char source_window[] = "Source";
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
}
/** @function thresh_callback */
void thresh_callback(int, void* )
{
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
//使用Canny检测边缘
Canny( src_gray, canny_output, thresh, thresh*2, 3 );
//搜索轮廓
/*
findContours参数解释
canny_output:输入的二值图像(使用边缘检测算子检测的边缘图像)
contours:边缘值,是一个二维数组,每个轮廓对应一个数组
hirerarchy:和轮廓个数相同,每个轮廓contours[ i ]对应4个hierarchy元素hierarchy[ i ][ 0 ] ~hierarchy[ i ][ 3 ],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,该值设置为负数。
mode:轮廓的检索模式,CV_RETR_TREE建立一个等级树结构的轮廓。
method:轮廓的近似办法,CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
Point:轮廓点的偏移量???
*/
findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
//绘制轮廓
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
for( int i = 0; i< contours.size(); i++ )
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
//绘制轮廓
/*
drawContours参数解释
drawing:绘制画板
contours:轮廓信息,由findContours给出,
i:第几个轮廓
color:轮廓颜色
2:轮廓线条粗细
8:线条类型
hirerarchy:轮廓层级模式
*/
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
}
namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
}
参考文献
1.http://docs.opencv.org/master/df/d0d/tutorial_find_contours.html