imgproc模块--轮廓搜索

1.目的
(1)使用openCV函数findContours()搜索图像中的轮廓信息
(2)使用openCV函数drawContours()绘制图像中的轮廓信息

2.部分代码解释
(1)findContours

    /*
    findContours参数解释
    canny_output:输入的二值图像(使用边缘检测算子检测的边缘图像)
    contours:边缘值,是一个二维数组,每个轮廓对应一个数组
    hirerarchy:和轮廓个数相同,每个轮廓contours[ i ]对应4个hierarchy元素hierarchy[ i ][ 0 ] ~hierarchy[ i ][ 3 ],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,该值设置为负数。
    mode:轮廓的检索模式,CV_RETR_TREE建立一个等级树结构的轮廓。
    method:轮廓的近似办法,CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
    Point:轮廓点的偏移量???
    */
    findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

(2)drawContours

        /*
        drawContours参数解释
        drawing:绘制画板
        contours:轮廓信息,由findContours给出,
        i:第几个轮廓
        color:轮廓颜色
        2:轮廓线条粗细
        8:线条类型
        hirerarchy:轮廓层级模式
        */
        drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point());

3.完整代码
(1)CommonInclude.h

#ifndef COMMON_INCLUDE
#define COMMON_INCLUDE
#include<iostream>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
#endif

(2)Contours.cpp

#include"CommonInclude.h"

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/** @function main */
int main( int argc, char** argv )
{
    if(argc<2){
        cout << "more parameters are required!!!" << endl;
        return(-1);
    }
    src = imread( argv[1], 1 );
    if(!src.data){
        cout << "error to read image!!!" << endl;
        return(-1);
    }
    //转化成灰度图像
    cvtColor( src, src_gray, CV_BGR2GRAY );
    //图像平滑
    blur( src_gray, src_gray, Size(3,3) );

    char source_window[] = "Source";
    namedWindow( source_window, CV_WINDOW_AUTOSIZE );
    imshow( source_window, src );

    createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
    thresh_callback( 0, 0 );

    waitKey(0);
    return(0);
}

/** @function thresh_callback */
void thresh_callback(int, void* )
{
    Mat canny_output;
    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;

    //使用Canny检测边缘
    Canny( src_gray, canny_output, thresh, thresh*2, 3 );
    //搜索轮廓
    /*
    findContours参数解释
    canny_output:输入的二值图像(使用边缘检测算子检测的边缘图像)
    contours:边缘值,是一个二维数组,每个轮廓对应一个数组
    hirerarchy:和轮廓个数相同,每个轮廓contours[ i ]对应4个hierarchy元素hierarchy[ i ][ 0 ] ~hierarchy[ i ][ 3 ],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,该值设置为负数。
    mode:轮廓的检索模式,CV_RETR_TREE建立一个等级树结构的轮廓。
    method:轮廓的近似办法,CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
    Point:轮廓点的偏移量???
    */
    findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

    //绘制轮廓
    Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
    for( int i = 0; i< contours.size(); i++ )
    {
        Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
        //绘制轮廓
        /*
        drawContours参数解释
        drawing:绘制画板
        contours:轮廓信息,由findContours给出,
        i:第几个轮廓
        color:轮廓颜色
        2:轮廓线条粗细
        8:线条类型
        hirerarchy:轮廓层级模式
        */
        drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
    }
    namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
    imshow( "Contours", drawing );
}

参考文献
1.http://docs.opencv.org/master/df/d0d/tutorial_find_contours.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值