机器学习 NFL定理

NFL定理指出,在没有先验知识的情况下,任何机器学习算法的表现都不会优于随机猜测。这意味着不存在通用的最佳算法,学习算法需针对具体问题进行适应。在实际应用中,我们关注的是特定问题的解决方案,而不是泛化的模型性能。因此,对比不同模型在特定任务上的表现才是有意义的。
摘要由CSDN通过智能技术生成

一、什么是NFL定理?

No Free Lunch Theoren ,没有免费的午餐定理,简称NFL定理;

在机器学习算法中体现为在没有实际背景下,没有任何一种算法比随机胡猜的效果更好;

学习算法必须要作出一个与问题领域有关的“假设”,分类器必须与问题域相适应,不存在一个与具体应用无关的,普遍适用的“最优分类器”;

NFL定理的前提是:所有问题出现的机会相等、或所有问题都是同等重要。但是现实中,我们往往会得到特定的数据,特定的分布,解决特定的问题,所以我们只需要解决关注的问题,而不需要考虑这个模型是否很好的解决其他的问题。只有对于特定的问题,我们比较不同模型的才有意义。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值