昇思25天学习打卡营第7天|模型训练

26 篇文章 0 订阅
15 篇文章 0 订阅

☀️ 最近报名参加了昇思25天学习打卡训练营
☀️ 第1天初步学习了MindSpore的基本操作
☀️ 第2天初步学习了张量Tensor
☀️ 第3天初步学习了数据集Dataset
☀️ 第4天初步学习了数据变换Transforms
☀️ 第5天初步学习了网络构建
☀️ 第6天初步学习了函数式自动微分
☀️ 第7天学习 初学入门 / 初学教程 / 08-模型训练

1. 教程与代码

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

现在我们有了数据集和模型后,可以进行模型的训练与评估。

1.1 构建数据集

首先从数据集 Dataset加载代码,构建数据集。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)


def datapipe(path, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = MnistDataset(path)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

和之前一样,把 MINST 数据集下载到根目录下。

在这里插入图片描述

1.2 定义神经网络模型

网络构建中加载代码,构建一个神经网络模型。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()

1.3 定义超参、损失函数和优化器

1.3.1 超参

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

在这里插入图片描述

公式中, 𝑛 是批量大小(batch size), η 是学习率(learning rate)。另外, 𝑤𝑡 为训练轮次 𝑡 中的权重参数, ∇𝑙 为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。

epochs = 3
batch_size = 64
learning_rate = 1e-2

1.3.2 损失函数

损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差)和用于分类的nn.NLLLoss(负对数似然)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmax和nn.NLLLoss,可以对logits 进行归一化并计算预测误差。

loss_fn = nn.CrossEntropyLoss()

1.3.3 优化器

模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用 SGD(Stochastic Gradient Descent)优化器

我们通过model.trainable_params()方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:

grads = grad_fn(inputs)

optimizer(grads)

1.4 训练与评估

设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:

  • 训练:迭代训练数据集,并尝试收敛到最佳参数。
  • 验证/测试:迭代测试数据集,以检查模型性能是否提升。
    接下来我们定义用于训练的train_loop函数和用于测试的test_loop函数。

使用函数式自动微分,需先定义正向函数forward_fn,使用value_and_grad获得微分函数grad_fn。然后,我们将微分函数和优化器的执行封装为train_step函数,接下来循环迭代数据集进行训练即可。

# 定义前向传播函数 forward function
def forward_fn(data, label):  
    # 通过模型对数据进行前向传播计算,得到预测结果logits  
    logits = model(data)  
    # 使用损失函数计算预测结果logits和真实标签label之间的损失  
    loss = loss_fn(logits, label)  
    # 返回计算得到的损失和预测结果logits  
    return loss, logits  
  
# 获取梯度函数 gradient function  
# mindspore.value_and_grad 是一个函数,用于同时获取函数的输出值和梯度  
# 参数说明:  
#   - forward_fn: 前向传播函数  
#   - None: 参数占位符,用于指定不需要求梯度的参数(这里未使用)  
#   - optimizer.parameters: 需要求梯度的参数,即优化器中的参数  
#   - has_aux=True: 表示前向传播函数返回多个值(本例中为loss和logits),需要保留辅助输出logits  
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)  
  
# 定义一步训练函数 one-step training  
def train_step(data, label):  
    # 使用grad_fn计算损失和梯度  
    # 注意这里使用grad_fn的返回值,损失和logits(_表示不使用的logits)  
    # grads是计算得到的梯度  
    (loss, _), grads = grad_fn(data, label)  
    # 使用优化器对参数进行更新  
    optimizer(grads)  
    # 返回计算得到的损失  
    return loss  
  
# 定义训练循环函数  
def train_loop(model, dataset):  
    # 获取数据集的总大小  
    size = dataset.get_dataset_size()  
    # 设置模型为训练模式  
    model.set_train()  
    # 遍历数据集中的每个批次  
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):  
        # 对一个批次的数据进行一步训练  
        loss = train_step(data, label)  
  
        # 如果当前批次是每100个批次的开始(即batch是100的倍数)  
        if batch % 100 == 0:  
            # 将loss转换为numpy数组以便打印  
            loss, current = loss.asnumpy(), batch  
            # 打印当前批次的损失和进度  
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

test_loop函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。

# 定义测试循环函数  
def test_loop(model, dataset, loss_fn):  
    # 获取数据集的总批次数  
    num_batches = dataset.get_dataset_size()  
    # 设置模型为评估模式(关闭dropout、batchnorm的训练模式等)  
    model.set_train(False)  
      
    # 初始化总样本数、测试损失和正确预测的样本数  
    total, test_loss, correct = 0, 0, 0  
      
    # 遍历数据集中的每个批次  
    for data, label in dataset.create_tuple_iterator():  
        # 对当前批次的数据进行预测  
        pred = model(data)  
          
        # 累加当前批次的样本数  
        total += len(data)  
          
        # 计算当前批次的损失,并累加  
        # 注意:这里需要将损失转换为numpy数组,以便进行后续的累加  
        test_loss += loss_fn(pred, label).asnumpy()  
          
        # 获取预测概率最大的类别索引(即预测结果)  
        # 然后与真实标签进行比较,得到预测正确的样本索引  
        # 使用numpy的sum函数统计预测正确的样本数  
        correct += (pred.argmax(1) == label).asnumpy().sum()  
      
    # 计算平均测试损失  
    test_loss /= num_batches  
      
    # 计算准确率  
    accuracy = correct / total  
      
    # 打印测试结果  
    print(f"Test: \n Accuracy: {(100*accuracy):>0.1f}%, Avg loss: {test_loss:>8f} \n")

在计算准确率时,使用了 pred.argmax(1) 来获取每个样本预测概率最大的类别索引(即预测结果),并将其与真实标签 label 进行比较。这里假设 pred 是一个二维张量,其中第二维的大小与类别数相同,且每个样本的预测概率都进行了softmax归一化。argmax(1) 函数沿着第二个维度(即类别维度)找到最大值的索引,得到一个与 label 形状相同的张量,然后通过 == 运算符进行比较,得到一个布尔张量,表示每个样本是否预测正确。最后,使用 asnumpy().sum() 将布尔张量转换为numpy数组并计算预测正确的样本数。

我们将实例化的损失函数和优化器传入train_loop和test_loop中。训练3轮并输出loss和Accuracy,查看性能变化。

loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(model, train_dataset)
    test_loop(model, test_dataset, loss_fn)
print("Done!")

经过一段时间后,输出结果:

Epoch 1
-------------------------------
loss: 2.310621  [  0/938]
loss: 1.751060  [100/938]
loss: 0.968297  [200/938]
loss: 0.717472  [300/938]
loss: 0.591771  [400/938]
loss: 0.346876  [500/938]
loss: 0.410987  [600/938]
loss: 0.374576  [700/938]
loss: 0.362967  [800/938]
loss: 0.443938  [900/938]
Test: 
 Accuracy: 90.5%, Avg loss: 0.324608 

Epoch 2
-------------------------------
loss: 0.331901  [  0/938]
loss: 0.278394  [100/938]
loss: 0.267605  [200/938]
loss: 0.235159  [300/938]
loss: 0.249736  [400/938]
loss: 0.178183  [500/938]
loss: 0.183217  [600/938]
loss: 0.224258  [700/938]
loss: 0.356890  [800/938]
loss: 0.180973  [900/938]
Test: 
 Accuracy: 92.9%, Avg loss: 0.251726 

Epoch 3
-------------------------------
loss: 0.213328  [  0/938]
loss: 0.264936  [100/938]
loss: 0.219609  [200/938]
loss: 0.278370  [300/938]
loss: 0.168669  [400/938]
loss: 0.173922  [500/938]
loss: 0.275085  [600/938]
loss: 0.215402  [700/938]
loss: 0.142106  [800/938]
loss: 0.203715  [900/938]
Test: 
 Accuracy: 94.0%, Avg loss: 0.210443 

Done!

可以看到,随着训练轮次增加,准确率也在提升,最后是94.0%

在这里插入图片描述

下面看看超参对结果的影响(控制变量)。

1.4.1 修改epochs

把训练批次调大一倍试试: epochs = 6

Epoch 1
-------------------------------
loss: 0.175775  [  0/938]
loss: 0.233269  [100/938]
loss: 0.168698  [200/938]
loss: 0.180069  [300/938]
loss: 0.179697  [400/938]
loss: 0.122025  [500/938]
loss: 0.155524  [600/938]
loss: 0.184666  [700/938]
loss: 0.081351  [800/938]
loss: 0.253436  [900/938]
Test: 
 Accuracy: 94.6%, Avg loss: 0.179912 

Epoch 2
-------------------------------
loss: 0.399508  [  0/938]
loss: 0.139583  [100/938]
loss: 0.207575  [200/938]
loss: 0.140202  [300/938]
loss: 0.080877  [400/938]
loss: 0.055827  [500/938]
loss: 0.121325  [600/938]
loss: 0.108077  [700/938]
loss: 0.175074  [800/938]
loss: 0.245299  [900/938]
Test: 
 Accuracy: 95.3%, Avg loss: 0.157144 

Epoch 3
-------------------------------
loss: 0.130403  [  0/938]
loss: 0.252430  [100/938]
loss: 0.239051  [200/938]
loss: 0.099728  [300/938]
loss: 0.175949  [400/938]
loss: 0.240394  [500/938]
loss: 0.088452  [600/938]
loss: 0.115153  [700/938]
loss: 0.104933  [800/938]
loss: 0.193794  [900/938]
Test: 
 Accuracy: 95.8%, Avg loss: 0.141462 

Epoch 4
-------------------------------
loss: 0.227399  [  0/938]
loss: 0.110691  [100/938]
loss: 0.171419  [200/938]
loss: 0.086182  [300/938]
loss: 0.154963  [400/938]
loss: 0.078329  [500/938]
loss: 0.095009  [600/938]
loss: 0.074314  [700/938]
loss: 0.115410  [800/938]
loss: 0.077688  [900/938]
Test: 
 Accuracy: 96.3%, Avg loss: 0.125190 

Epoch 5
-------------------------------
loss: 0.069866  [  0/938]
loss: 0.158335  [100/938]
loss: 0.078239  [200/938]
loss: 0.035079  [300/938]
loss: 0.071929  [400/938]
loss: 0.117389  [500/938]
loss: 0.088296  [600/938]
loss: 0.062998  [700/938]
loss: 0.154398  [800/938]
loss: 0.146152  [900/938]
Test: 
 Accuracy: 96.4%, Avg loss: 0.119724 

Epoch 6
-------------------------------
loss: 0.098969  [  0/938]
loss: 0.023322  [100/938]
loss: 0.133667  [200/938]
loss: 0.084907  [300/938]
loss: 0.062920  [400/938]
loss: 0.068926  [500/938]
loss: 0.061599  [600/938]
loss: 0.060509  [700/938]
loss: 0.081936  [800/938]
loss: 0.152974  [900/938]
Test: 
 Accuracy: 96.9%, Avg loss: 0.105913 

Done!

批次数量调大,准确率也提高了,最终96.9%

在这里插入图片描述

1.4.2 修改learning_rate

修改学习率为原来的一半: learning_rate = 5e-3

Epoch 1
-------------------------------
loss: 0.149949  [  0/938]
loss: 0.076181  [100/938]
loss: 0.084535  [200/938]
loss: 0.035498  [300/938]
loss: 0.067121  [400/938]
loss: 0.051831  [500/938]
loss: 0.029101  [600/938]
loss: 0.166015  [700/938]
loss: 0.076999  [800/938]
loss: 0.027612  [900/938]
Test: 
 Accuracy: 97.0%, Avg loss: 0.102585 

Epoch 2
-------------------------------
loss: 0.030460  [  0/938]
loss: 0.089365  [100/938]
loss: 0.067722  [200/938]
loss: 0.131093  [300/938]
loss: 0.125349  [400/938]
loss: 0.049629  [500/938]
loss: 0.111569  [600/938]
loss: 0.101287  [700/938]
loss: 0.154909  [800/938]
loss: 0.079005  [900/938]
Test: 
 Accuracy: 97.1%, Avg loss: 0.100701 

Epoch 3
-------------------------------
loss: 0.062168  [  0/938]
loss: 0.042890  [100/938]
loss: 0.159806  [200/938]
loss: 0.033079  [300/938]
loss: 0.090644  [400/938]
loss: 0.054009  [500/938]
loss: 0.069954  [600/938]
loss: 0.091765  [700/938]
loss: 0.065121  [800/938]
loss: 0.111553  [900/938]
Test: 
 Accuracy: 97.1%, Avg loss: 0.096890 

Done!

在这里插入图片描述

学习率调小,准确率也提高了,最终97.1%

2. 小结

今天学习了模型训练,是基于之前的网络构建的。

模型训练分为以下四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

在这里插入图片描述

  • 34
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是一个简单的微信小程序制作学习计划打卡记录页面的代码示例,其中包含了前几学习时间: ``` <view class="container"> <view class="header"> <text>学习计划打卡记录</text> </view> <view class="content"> <view class="card"> <view class="card-header"> <text>今</text> <text>2021-07-01</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> </view> </view> <view class="card"> <view class="card-header"> <text>昨</text> <text>2021-06-30</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>120分钟</text> </view> </view> </view> <view class="card"> <view class="card-header"> <text>前</text> <text>2021-06-29</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>90分钟</text> </view> </view> </view> </view> </view> ``` 在上面的代码中,我们使用了三个 `card` 元素来展示前几打卡记录。每个 `card` 元素都包含一个 `card-header` 元素和一个 `card-body` 元素。`card-header` 元素中包含了日期信息,而 `card-body` 元素中包含了输入框和已学习时间的显示。 在实际开发中,你需要将上面的代码替换成你自己的样式和数据。同时,你还需要编写处理用户输入和计算已学习时间的逻辑代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不雨_亦潇潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值