Token Recovering Attention (TRA)模型详解及代码复现

模型背景

在深入探讨TRA模型的核心思想之前,我们需要了解其诞生的背景。TRA模型是为了解决视频姿态Transformer (VPT) 中的 效率与精度权衡 问题而提出的。

传统的VPT模型在处理长序列数据时面临两大挑战:

  1. 计算负担 :随着输入序列长度的增加,模型的计算复杂度呈平方级增长。

  2. 特征冗余 :相邻帧之间的相似性导致视频中存在大量冗余信息。

TRA模型的创新点在于提出了一种基于沙漏结构的高效三维人体姿态估计框架,Hourglass Tokenizer (HoT),旨在通过剪枝和恢复操作来优化模型效率,同时保持较大的时间感受野。这种方法为VPT模型在处理长序列数据时提供了一种新的思路,为后续的研究奠定了基础。

核心思想

TRA模型的核心思想源于对Transformer架构在处理长序列数据时的效率问题的深入思考。在Transformer模型中,自注意力机制的计算复杂度与输入序列长度的平方成正比,这使得处理长序列数据变得极为耗时。

为了解决这一问题,TRA模型提出了一种创新的方法:通过 动态选择和恢复关键信息 来优化计算效率。具体而言,TRA模型采用了一种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值