目录
AMFCNN-RKD:齿轮故障诊断的轻量级多传感器融合网络详解
一、问题背景与挑战
齿轮故障诊断面临两大核心挑战:
- 噪声干扰:工业环境中传感器信号常受高斯白噪声污染(SNR低至-10dB)
- 部署限制:传统诊断模型参数量大(7M+),难以在嵌入式平台部署
现有解决方案的不足:
- 单传感器方法:易受环境干扰,特征提取不充分
- 复杂融合模型:计算资源消耗大(如DenseNet达10.3M参数)
- 传统知识蒸馏:仅传递单层特征,忽略特征间关联性
目录
AMFCNN-RKD:齿轮故障诊断的轻量级多传感器融合网络详解
齿轮故障诊断面临两大核心挑战:
现有解决方案的不足: