AMFCNN-RKD:齿轮故障诊断的轻量级多传感器融合模型详解(python代码复现)

#王者杯·14天创作挑战营·第2期#

目录

一、问题背景与挑战

二、AMFCNN-RKD整体架构

工作流程:

三、核心模块解析

3.1 多层融合模块(MFM)

3.2 Inception多尺度特征提取

AMFCNN-RKD:齿轮故障诊断的轻量级多传感器融合网络详解

一、问题背景与挑战

二、AMFCNN-RKD整体架构

工作流程:

三、核心模块解析

3.1 多层融合模块(MFM)

3.2 Inception多尺度特征提取

3.3 关系知识蒸馏(MFM-RKD)

四、实验验证

4.1 实验平台与数据

4.2 性能对比

4.3 特征可视化

4.4 对比SOTA模型

五、创新技术突破

5.1 多层特征融合机制

5.2 关系知识蒸馏

5.3 轻量化设计

六、工业应用价值

6.1 嵌入式部署性能

6.2 实际应用场景

七、参数优化策略

7.1 损失函数权重

7.2 学习率配置

结论

一、问题背景与挑战

齿轮故障诊断面临两大核心挑战:

  1. 噪声干扰​:工业环境中传感器信号常受高斯白噪声污染(SNR低至-10dB)
  2. 部署限制​:传统诊断模型参数量大(7M+),难以在嵌入式平台部署

现有解决方案的不足:

  • 单传感器方法​:易受环境干扰,特征提取不充分
  • 复杂融合模型​:计算资源消耗大(如DenseNet达10.3M参数)
  • 传统知识蒸馏​:仅传递单层特征,忽略特征间关联性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值