光伏功率预测新突破:TCN-ECANet-GRU混合模型详解与复现

#王者杯·14天创作挑战营·第2期#

 研究背景

  1. 背景与挑战
    光伏发电受天气非线性影响,传统方法(统计模型、机器学习)难以处理高维时序数据,预测误差大。
  2. 创新模型提出
    融合时序卷积网络(TCN)、高效通道注意力(ECANet)和门控循环单元(GRU)的混合架构。
  3. 方法论细节
    • TCN:膨胀因果卷积提取长时序特征
    • ECANet:通道注意力增强特征选择能力
    • GRU:捕获时序依赖关系
  4. 实验验证
    使用澳大利亚光伏电站5分钟分辨率数据,对比6种基线模型。
  5. 应用价值
    为电网调度提供高精度功率预测,支持15-45分钟短期决策。

整体框架


核心创新点与技术原理

1. 三阶段混合架构(TCN-ECANet-GRU)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值