题目来自老师的课后作业,如下所示。很多地方应该可以直接调用函数,但是初学Python,对里面的函数还不是很了解,顺便带着学习的态度,尽量自己动手code。
测试版代码,里面带有很多注释和测试代码:
# -*- coding: cp936 -*-
import math
import random
import matplotlib.pyplot as plt
import numpy as np
'''
在x=[0,1]上均匀采样10个点组成一个数据集D=[a,b]
'''
a = []
b = []
x=0
def func(x):
mu=0
sigma=0.1
epsilon = random.gauss(mu,sigma) #高斯分布随机数
return np.sin(2*np.pi*x)+epsilon
for i in range(0,10):
x=x+1.0/11.0
a.append(x)
b.append(func(x))
#定义输出矩阵函数
def print_matrix( info, m ):
i = 0; j = 0; l = len(m)
print info
for i in range( 0, len( m ) ):
for j in range( 0, len( m[i] ) ):
if( j == l ):
print ' |',
print '%6.4f' % m[i][j],
print
print
#定义交换变量函数
def swap( a, b ):
t = a; a = b; b = t
#定义线性方程函数,高斯消元法
def solve( ma, b, n ):
global m; m = ma # 这里主要是方便最后矩阵的显示
global s;
i = 0; j = 0; row_pos = 0; col_pos = 0; ik = 0; jk = 0
mik = 0.0; temp = 0.0
n = len( m )
# row_pos 变量标记行循环, col_pos 变量标记列循环
while( ( row_pos < n ) and( col_pos < n ) ):
# 选主元
mik = - 1
for i in range( row_pos, n ):
if( abs( m[i][col_pos] ) > mik ):
mik = abs( m[i][col_pos] )
ik = i
if( mik == 0.0 ):
col_pos = col_pos + 1
continue
# 交换两行
if( ik != row_pos ):
for j in range( col_pos, n ):
swap( m[row_pos][j], m[ik][j] )
swap( m[row_pos][n], m[ik][n] );
try:
# 消元
m[row_pos][n] /= m[row_pos][col_pos]
except ZeroDivisionError:
# 除零异常 一般在无解或无穷多解的情况下出现……
return 0;
j = n - 1
while( j >= col_pos ):
m[row_pos][j] /= m[row_pos][col_pos]
j = j - 1
for i in range( 0, n ):
if( i == row_pos ):
continue
m[i][n] -= m[row_pos][n] * m[i][col_pos]
j = n - 1
while( j >= col_pos ):
m[i][j] -= m[row_pos][j] * m[i][col_pos]
j = j - 1
row_pos = row_pos + 1; col_pos = col_pos + 1
for i in range( row_pos, n ):
if( abs( m[i][n] ) == 0.0 ):
return 0
return 1
matrix_A=[] #将系数矩阵A的所有元素存到a[n-1][n-1]中
matrix_b=[]
X=a
Y=b
N=len(X)
M=3 #对于题目中要求的不同M[0,1,3,9]值,需要在这里更改,然后重新编译运行
#计算线性方程组矩阵A的第[i][j]个元素A[i][j]
def matrix_element_A(x,i,j,n):
sum_a=0
for k in range(0,n):
sum_a = sum_a+pow(x[k],i+j-2) #x[0]到x[n-1],共n个元素求和
return sum_a
for i in range(0,M+1):
matrix_A.append([])
for j in range(0,M+1):
matrix_A[i].append(0)
matrix_A[i][j] = matrix_element_A(X,i+1,j+1,N)
#计算线性方程组矩阵b的第[i]行元素b[i]
def matrix_element_b(x,y,i,n):
sum_b=0
for k in range(0,n):
sum_b=sum_b+y[k]*pow(x[k],i-1) #x[0]到x[n-1],共n个元素求和
return sum_b
for i in range(0,M+1):
matrix_b.append(matrix_element_b(X,Y,i+1,N))
#函数matrix_element_A_()用来求扩展矩阵A_,array_A表示系数矩阵A,array_b表示方程组右侧常数,A_row表示A的行秩
def matrix_element_A_(array_A,array_b,A_row):
M=A_row #局部变量M,与全局变量M无关
matrix_A_= []
for i in range(0,M+1):
matrix_A_.append([])
for j in range(0,M+2):
matrix_A_[i].append(0)
if j<M+1:
matrix_A_[i][j] = array_A[i][j]
elif j==M+1: #如果不加这个控制条件,matrix_A_将被array_b刷新
matrix_A_[i][j] = array_b[i]
return matrix_A_
matrix_A_ = matrix_element_A_(matrix_A,matrix_b,M)
'''
多项式拟合函数
'''
#x为自变量,w为多项式系数,m为多项式的阶数
def poly_fit(x,wp,m):
sumf = 0
for j in range(0,m+1):
sumf=sumf+wp[j]*pow(x,j)
return sumf
'''
sin(2*pi*x)在x=0处的3阶泰勒展开式
'''
coef_taylor = [] #正弦函数的泰勒展开式系数
K=3 #展开到K阶
if K%2==0:
print "K必须为正奇数"
s = 0
k=(K-1)/2+1 #小k为系数个数
#求K阶泰勒展开式的系数:
for i in range(0,k):
s = pow(-1,i)*pow(2*np.pi,2*i+1)/math.factorial(2*i+1)
coef_taylor.append(s)
print "%d阶泰勒级数展开式的系数为:" %K
print coef_taylor
#tx为泰勒展开式函数的自变量
def sin_taylor(tx):
sum_tay=0
for i in range(0,k):
sum_tay=sum_tay+coef_taylor[i]*pow(tx,2*k+1)
return sum_tay
poly_taylor_a = [] #泰勒展开式函数的输入值
poly_taylor_b = [] #泰勒展开式函数的预测值
for i in range(0,N):
poly_taylor_a.append(a[i])
poly_taylor_b.append(sin_taylor(poly_taylor_a[i]))
'''
在x=[0,1]上生成100个点,作为测试集
'''
testa = [] #测试集的横坐标
testb = [] #测试集的纵坐标
x=0
for i in range(0,100):
x=x+1.0/101.0
testa.append(x)
testb.append(np.sin(2*np.pi*x))
'''
计算泰勒展开式模型的训练误差和测试误差
'''
#定义误差函数:
#ly为真实值,fx为预测值
def Lfun(ly,fx):
L=0
for i in range(0,len(fx)):
L=L+pow(ly[i]-fx[i],2)
return L
'''
主程序
'''
if __name__ == '__main__':
# 求解方程组, 并输出方程组的可解信息
ret = solve( matrix_A_, 0, 0 )
if( ret== 0 ):
print "方 程组无唯一解或无解\n"
# 输出方程组及其解,解即为w[j]
w = []
for i in range( 0, len( m ) ):
w.append(m[i][len( m )])
print "M=%d时的系数w[j]:" %M
print w
#多项式拟合后的预测值:
poly_a = []
poly_b = []
for i in range(0,N):
poly_a.append(a[i])
poly_b.append(poly_fit(poly_a[i],w,M))
#fxtay为泰勒展开式的预测值,LCtaylor为测试误差:
fxtay = []
for i in range(0,100):
fxtay.append(sin_taylor(testa[i]))
LCtaylor = Lfun(testb,fxtay)/100
print "三阶泰勒展开式的测试误差为:%f" %LCtaylor
#fxpoly为M阶多项式拟合函数的预测值,LXpoly为训练误差:
fxpoly = []
for i in range(0,N): #len(poly_b)=N=10
fxpoly.append(poly_fit(a[i],w,M))
LXpoly = Lfun(b,fxpoly)/len(poly_b)
print "M=%d时多项式拟合函数的训练误差为:%f" % (M,LXpoly)
#fxpolyc为M阶多项式拟合函数的预测值,LCpoly为测试误差:
fxpolyc = []
for i in range(0,100):
fxpolyc.append(poly_fit(testa[i],w,M))
LCpoly = Lfun(testb,fxpolyc)/100
print "M=%d时多项式拟合函数的测试误差为:%f" % (M,LCpoly)
#多项式拟合的效果:
fig1 = plt.figure(1)
plt.plot(poly_a,poly_b,color='blue',linestyle='solid',marker='o')
#加入epsilon后的样本:
plt.plot(a,b,color='red',linestyle='dashed',marker='x')
#泰勒展开式拟合效果:
plt.plot(poly_taylor_a,poly_taylor_b,color='yellow',linestyle='dashed',marker='o')
#figure(2)对比多项式拟合函数与训练数据:
fig2 = plt.figure(2)
plt.plot(poly_a,poly_b,color='blue',linestyle='solid',marker='o')
plt.plot(a,b,color='red',linestyle='dashed',marker='x')
plt.show()
M=3时的运行结果:
3阶泰勒级数展开式的系数为:
[6.283185307179586, -41.341702240399755]
M=3时的系数w[j]:
[-0.28492708632293295, 13.031310645420685, -37.730992850050448, 25.464782221275197]
三阶泰勒展开式的测试误差为:100.889335
M=3时多项式拟合函数的训练误差为:0.008933
M=3时多项式拟合函数的测试误差为:0.007886
Figure(1):
Figure(2):
初次编写这么长的代码,思路不是有一点的混乱。其中有也有。以后会继续来优化这个程序,作为学习Python的入口。