DCGANs源码解析(二)

model.pyDCGANs大部分都在一个叫做 DCGAN 的 Python 类(class)中(model.py)。像这样把所有东西都放在一个类中非常有用,因为训练后中间状态可以被保存起来,以便后面使用。首先让我们定义生成器和鉴别器(上一篇已经介绍过了)。 linear, conv2d_tra...

2017-01-11 20:49:31

阅读数 5150

评论数 4

DCGAN 源码分析(一)

DCGANhttps://github.com/carpedm20/DCGAN-tensorflowDCGAN的原理和GAN是一样的,它只是把上述的G和D换成了两个卷积神经网络(CNN)。但不是直接换就可以了,DCGAN对卷积神经网络的结构做了一些改变,以提高样本的质量和收敛的速度,这些改变如下:...

2017-01-11 14:07:35

阅读数 18385

评论数 8

yolo v2 源码分析(一)

detector .c文件,这里仅分析train_detector void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) { list *o...

2017-01-06 17:34:42

阅读数 6885

评论数 2

YOLOv2如何fine-tuning?

在上一篇用YOLOv2模型训练VOC数据集中,我们尝试用YOLOv2来训练voc数据集,但我想训练自己的数据集,那么YOLOv2如何做fine-tuning呢?我们一步一步来做~ 1 准备数据 1.1 建立层次结构 首先在darknet/data文件夹下创建一个文件夹fddb2016,文...

2016-12-26 13:30:51

阅读数 1558

评论数 1

YOLO源码详解(五)-追本溯源7*7个grid

者:木凌  时间:2016年11月。  文章连接:http://blog.csdn.net/u014540717 最近一直有人在问,把图像分为7*7个网格,每个网格推荐两个框是什么意思,一直没搞明白,今天我们就从源码入手,追本溯源,彻底理解7*7个grid  在YOLO源码详解(三...

2016-12-26 13:26:38

阅读数 678

评论数 0

YOLO源码详解(五)- YOLO中的7*7个grid和RPN中的9个anchors

本系列作者:木凌  时间:2016年12月。  文章连接:http://blog.csdn.net/u014540717 一直不知道7×7的网格到底是干什么的,不就是结果预测7×7×2个框吗,这跟把原图分成7×7有什么关系?不分成7×7就不能预测7×7×2个框吗? 之前跟一个朋...

2016-12-26 11:55:30

阅读数 1062

评论数 0

YOLO源码详解(四)- 反向传播(back propagation)

本系列作者:木凌  时间:2016年12月。  文章连接:http://blog.csdn.net/u014540717 反向传播是CNN中非常重要的一个环节,对于理论部分,这里不做介绍,如果对反向传播理论部分不熟悉,可以查看以下网站。  非常详细:零基础入门深度学习(3) - 神...

2016-12-26 11:51:23

阅读数 787

评论数 0

YOLO源码详解(三)- 前向传播(forward)

本系列作者:木凌  时间:2016年11月。  文章连接:http://blog.csdn.net/u014540717 一、主函数void forward_network(network net, network_state state) //network.c void for...

2016-12-26 11:27:31

阅读数 1826

评论数 0

YOLO源码详解(二)- 函数剖析

本系列作者:木凌  时间:2016年11月。  文章连接:http://blog.csdn.net/u014540717 1、网络参数解析函数:parse_network_cfg network parse_network_cfg(char *filename) { //r...

2016-12-26 10:40:24

阅读数 1340

评论数 0

YOLO源码详解(一)-训练

本系列作者:木凌  时间:2016年11月。  文章连接:http://blog.csdn.net/u014540717 本系列文章会持续更新,主要会分以下几个部分:  1、darknet下的yolo源代码解读  2、将yolo移植到mxnet下  3、模型压缩与加速  白天需要工作,只有晚上...

2016-12-26 10:28:30

阅读数 1605

评论数 0

keras和caffe的区别(1)

一.样本目录的区别: caffe创建样本时,允许样本目录下有多级子目录,最终的类型数是样本目录下的文件个数 如样本目录是:train,图片存放在worker,tools,machine,orign。。。等子目录下          |------worker  |------postive----...

2016-11-04 18:59:13

阅读数 2729

评论数 0

如何使用网络的bottleneck特征提升准确率

使用预训练网络的bottleneck特征:一分钟达到90%的正确率 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的网络。这样的网络在多数的计算机视觉问题上都能取得不错的特征,利用这样的特征可以让我们获得更高的准确率。 我们将使用vgg-16网络,该网络在ImageNet数据集上进行训...

2016-10-28 15:31:56

阅读数 9271

评论数 2

如何进行finetune

进行finetune的命令如下: ..\..\bin\caffe.exe train --solver=.\solver.prototxt -weights .\test.caffemodel pause   下面介绍caffe.exe的几个参数: 1)这里caffe.exe中第一个参数...

2016-05-27 11:57:15

阅读数 5669

评论数 3

solver参数说明

# The train/test net protocol buffer definition  net:"examples/mnist/lenet_train_test.prototxt"        //网络协议具体定义    # test_iter specif...

2016-05-27 11:39:28

阅读数 453

评论数 0

LRN归一化

LRN全称为LocalResponse Normalization,即局部响应归一化层。局部响应归一化层完成一种“临近抑制”操作,对局部输入区域进行归一化 具体实现在CAFFE_ROOT/src/caffe/layers/lrn_layer.cpp和同一目录下lrn_layer.cu中。   ...

2016-05-27 11:14:13

阅读数 2869

评论数 0

AdaptiveThreshold

void cvAdaptiveThreshold( const CvArr* src, CvArr* dst,  double max_value,  int adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, int threshold_type=CV_THR...

2016-05-27 11:03:50

阅读数 677

评论数 0

explicit

explicit作用: 在C++中,explicit关键字用来修饰类的构造函数,被修饰的构造函数的类,不能发生相应的隐式类型转换,只能以显示的方式进行类型转换。 explicit使用注意事项:     *       explicit 关键字只能用于类内部的构造函数声明上。     * ...

2016-05-27 11:00:16

阅读数 226

评论数 0

traincascade中不同特征的生成

traincascade中不同特征的生成 traincascade和haartrainning的主要区别: 1. haartrainning只能使用haar特征,而traincascade可以使用haar,lbp,hog特征,并且还容易扩展其他的特征。 2. traincascade的组织结...

2015-08-19 17:43:44

阅读数 780

评论数 0

决策树,随机森林,boost小结

决策树,随机森林,boost小结 决策树(CvDTree)是最基础的,是CvForestTree和CvBoostTree的父类。 决策树的生成,一般资料中都是基于ID3算法(熵增益),即ID3算法在每个节点分裂时,选择使gain(A)最大的特征分裂。   Opencv中决策树的...

2015-08-14 11:36:49

阅读数 1184

评论数 0

双边滤波

1. 简介 图像平滑是一个重要的操作,而且有多种成熟的算法。这里主要简单介绍一下Bilateral方法(双边滤波)。Bilateral blur相对于传统的高斯blur来说很重要的一个特性即可可以保持边缘(Edge Perseving),这个特点对于一些图像模糊来说很有用。一般的高斯模糊在进行采...

2015-05-28 17:37:42

阅读数 1343

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭