Opencv中meanShiftSegmentation的实现
1.样例在opencv-2.4.6.1\samples\cpp的meanShift_Segmentation.cpp中
static void meanShiftSegmentation( int, void* ){
cout << "spatialRad=" << spatialRad << "; "
<< "colorRad=" << colorRad << "; "
<< "maxPyrLevel=" << maxPyrLevel << endl;
pyrMeanShiftFiltering( img, res, spatialRad, colorRad, maxPyrLevel );
floodFillPostprocess( res, Scalar::all(2) );
imshow( winName, res );
}
2. 下面着重介绍一下pyrMeanShiftFiltering.核心函数式cvPyrMeanShiftFiltering。
该函数使用金字塔的方法加速,每一级金字塔中实际依然是使用meanshift。核心思想如下:
(1) 从金子塔塔顶的图像开始处理:(塔顶的图像最小,速度较快)。图像的每个点进行以下meanshift迭代运算:
a) 从图像左上角第一个像素开始,以该点为中心,生成指定大小的窗口。计算窗口中满足距离条件的所有点的平均位置以及R,G,B的平均值。
(距离条件:(R1-R0)*(R1-R0)+(G1-G0)*(G1-G0)+(B1-B0)*(B1-B0)<Thresh
其中R0,G0,B0为窗口中心像素的RGB值;R1,G1,B1为窗口中每个像素相应的RGB值)
b) 将窗口中心平移到a)获取的平均位置,计算新窗口中满足距离条件的所有点的新平均位置以及新R,G,B的平均值。(R0,G0,B0为a)中获取的新R,G,B的平均值,即距离比较的参考点为a)中获取的新R,G,B的平均值。)
c) 不断重复执行b),直到满足迭代次数或者新平均位置和新R,G,B的平均值和上一次的值差距满足迭代精度。另外在重复执行b)时,每一次都将窗口中心不断平移到b)获取的新平均位置,而且距离条件中比较的参考点为b)获取的新R,G,B的平均值。
d) 将迭代结束获得的新R,G,B的平均值存储到窗口中心位置对应的像素中。
不断移动窗口中心,将图像的每个点都做为窗口中心进行遍历,执行上面的a,b,c,d。
(2) 将(1)的结果(新的金字塔图像)生成下一层金字塔计算的初值和mask。利用mask实现加速,只有mask为1的位置才进行本轮的迭代。
a) 将(1)的结果升2采样,即图像长宽都扩大2倍,整个图像扩大4倍。将其作为改层金字塔图像计算的初值。
b) 判断a)结果中的所有像素点是否满足差异条件,如果满足则mask为1,否则mask为0。
(判断条件:(R1-R0)*(R1-R0)+(G1-G0)*(G1-G0)+(B1-B0)*(B1-B0)<Thresh
其中R0,G0,B0为窗口中心像素的RGB值;R1,G1,B1为窗口中每个像素相应的RGB值。。。。。。。。)
待续。。。。。
(3) 根据(2)中的初值和mask,将mask为1的所有像素进行meanshift迭代,迭代过程和步骤(1)一样,最后把迭代结束获得的新R,G,B的平均值存储到mask为1的位置的对应像素中。
(4) 重复步骤(2)和步骤(3),直至金字塔底。最终输出和原图大小一样的结果图像。
CV_IMPL void
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
double sp0, double sr, int max_level,
CvTermCriteria termcrit )
{
const int cn = 3;
const int MAX_LEVELS = 8;
if( (unsigned)max_level > (unsigned)MAX_LEVELS )
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
std::vector<cv::Mat> src_pyramid(max_level+1);
std::vector<cv::Mat> dst_pyramid(max_level+1);
cv::Mat mask0;
int i, j, level;
//uchar* submask = 0;
#define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)
double sr2 = sr * sr;
int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
int tab[768];
cv::Mat src0 = cv::cvarrToMat(srcarr);
cv::Mat dst0 = cv::cvarrToMat(dstarr);
if( src0.type() != CV_8UC3 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
if( src0.type() != dst0.type() )
CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
if( src0.size() != dst0.size() )
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
if( !(termcrit.type & CV_TERMCRIT_ITER) )
termcrit.max_iter = 5;
termcrit.max_iter = MAX(termcrit.max_iter,1);
termcrit.max_iter = MIN(termcrit.max_iter,100);
if( !(termcrit.type & CV_TERMCRIT_EPS) )
termcrit.epsilon = 1.f;
termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
for( i = 0; i < 768; i++ )
tab[i] = (i - 255)*(i - 255);
// 1. construct pyramid
src_pyramid[0] = src0;
dst_pyramid[0] = dst0;
for( level = 1; level <= max_level; level++ )
{
src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
(src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
dst_pyramid[level].create( src_pyramid[level].rows,
src_pyramid[level].cols, src_pyramid[level].type() );
cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
//CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
}
mask0.create(src0.rows, src0.cols, CV_8UC1);
//CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));
// 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
for( level = max_level; level >= 0; level-- )
{
cv::Mat src = src_pyramid[level];
cv::Size size = src.size();
uchar* sptr = src.data;
int sstep = (int)src.step;
uchar* mask = 0;
int mstep = 0;
uchar* dptr;
int dstep;
float sp = (float)(sp0 / (1 << level));
sp = MAX( sp, 1 );
if( level < max_level )
{
cv::Size size1 = dst_pyramid[level+1].size();
cv::Mat m( size.height, size.width, CV_8UC1, mask0.data );
dstep = (int)dst_pyramid[level+1].step;
dptr = dst_pyramid[level+1].data + dstep + cn;
mstep = (int)m.step;
mask = m.data + mstep;
//cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
m.setTo(cv::Scalar::all(0));
for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
{
for( j = 1; j < size1.width-1; j++, dptr += cn )
{
int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
}
}
cv::dilate( m, m, cv::Mat() );
mask = m.data;
}
dptr = dst_pyramid[level].data;
dstep = (int)dst_pyramid[level].step;
for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
dptr += dstep - size.width*3,
mask += mstep )
{
for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
{
int x0 = j, y0 = i, x1, y1, iter;
int c0, c1, c2;
if( mask && !mask[j] )
continue;
c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
// iterate meanshift procedure,图像的每点都使用meanshift,找到其收敛的RGB
for( iter = 0; iter < termcrit.max_iter; iter++ )
{
uchar* ptr;
int x, y, count = 0;
int minx, miny, maxx, maxy;
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
double icount;
int stop_flag;
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
minx = cvRound(x0 - sp); minx = MAX(minx, 0);
miny = cvRound(y0 - sp); miny = MAX(miny, 0);
maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
ptr = sptr + (miny - i)*sstep + (minx - j)*3;
for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
{
int row_count = 0;
x = minx;
#if CV_ENABLE_UNROLLED
for( ; x + 3 <= maxx; x += 4, ptr += 12 )
{
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x; row_count++;
}
t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x+1; row_count++;
}
t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x+2; row_count++;
}
t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x+3; row_count++;
}
}
#endif
for( ; x <= maxx; x++, ptr += 3 )
{
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x; row_count++;
}
}
count += row_count;
sy += y*row_count;
}
if( count == 0 )
break;
icount = 1./count;
x1 = cvRound(sx*icount);
y1 = cvRound(sy*icount);
s0 = cvRound(s0*icount);
s1 = cvRound(s1*icount);
s2 = cvRound(s2*icount);
stop_flag = (x0 == x1 && y0 == y1) || abs(x1-x0) + abs(y1-y0) +
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
tab[s2 - c2 + 255] <= termcrit.epsilon;
x0 = x1; y0 = y1;
c0 = s0; c1 = s1; c2 = s2;
if( stop_flag )
break;
}
dptr[0] = (uchar)c0;
dptr[1] = (uchar)c1;
dptr[2] = (uchar)c2;
}
}// 一层
}
}