拉格朗日插值讲解和程序

源之:
 
第2讲   拉格朗日插值多项式

  一、拉格朗日插值多项式
  为了便于学习,我们首先考虑两种简单情况。
  1. 线性插值多项式
  设函数f(x)在区间[a,b]上连续,在给定节点x0,x1上的值分别为y0,y1构造一个不超过一次的多项式:  L1(x)=a0+a1x
  使之满足条件 :L1(x0)=y0, L1(x1)=y1
  它的几何意义是,求通过给定点M0(x0,y0), M1(x1,y1)的一直线y=L1(x)近似曲线y=f(x),如图2.1所示
  
                             图2-1
  由解析几何知,过给定两点M0(x0,y0), M1(x1,y1)的直线方程为:
  
  若记
  则(2.1)式可写成
  
  把 分别称作点 的一次插值基函数,显然它们具有如下性质
   ,即
  
  线性插值多项式则为节点 的插值基函数与函数乘积之和。
   2.  抛物线插值多项式
  设函数 在区间[a,b]上连续,在给定节点 上的值分别为 构造一个不超过二次的多项式: 使之满足条件 :
  它的几何意义是,求通过给定点 的一抛物线 近似曲线 ,如图2.2所示
    

  图2-2
  像前面线性插值那样,设
共08页
下面我们求二次插值基函数 。由条件
  可得 在三个节点上的数值表为:
  表2-1
  

   x0

   x1

   x2

   l0(x)
   l1(x)
   l2(x)

   1
   0
   0

   0
   1
   0

   0
   0
   1

  先求x0点的二次插值基函数 ,由于它是一个不超过二次的多项式,且有 x1,x2 两个
  
  零点,于是可把 写成:
  再利用条件 可求得
  这样就求得了x0点的二次插值基函数
  用同样的方法,可以求出x1,x2点的二次插值基函数,它们分别为:
           
  于是得求的不超过二次插值多项式为:
  
     << 上一页 02 下一页 >>共08页
(3)n次插值多项式
  设函数f(x)在区间[a,b]上连续,在给定n+1个不同节点x0,x1,…,xn上的值分别为y0,y1,…,yn ,要求构造一个不超过n次的多项式:  Ln(x)=a0+a1x+…+ anxn , 去近似函数y=f(x),使之满足插值条件 :
  它的几何意义是,用过n+1个不同点M0(x0,y0), M1(x1,y1), M2(x2,y2),…,Mn(xn,yn)的n次代数曲线Ln(x)近似地代替曲线y=f(x),见图2-3
  
  图2-3
  现在采取上述构造一、二次插值多项式的方法,来构造一般插值多项式Ln(x),设在给定n+1个不同节点x0,x1,…,xn上的n次插值基函数分别为l0(x),l1(x),…,ln(x),则所求不超过n次的插值多项式表示为:
  下面求插值基函数l0(x),l1(x),…,ln(x).由条件:Ln(xi)=yj,i=0,1,…,n.
  可得插值基函数l0(x),l1(x),…,ln(x)在各节点上函数值表为:
  表2-2

  


 x0,  x1   x2        … …      xn

   l0(x)

   l1(x)

   l2(x)

  …
   ln(x)

 1       0       0    … …    0

 0       1       0    … …    0

 0       0       1    … …    0

  …       …      … …  …

 0       0        0   … …    1
     << 上一页 03 下一页 >>共08页
作为任一xi点的n次插值基函数分别为li(x),由于在除 外所有节点取值皆为0,因此,li(x)含有因子(x-x0)…(x-xi-1)(x-xi+1)…(x-xn),又因为li(x)为n次多项式,故li(x)可表示为:li(x)=Ai(x-x0)…(x-xi-1)(x-xi+1)…(x-xn)       
  再由条件li(xi)=1得
  
  
  

  
 
  (2.3)
  其中
  
  将(2.3)式称为函数f(x)的拉格朗日插值多项式
     << 上一页 04 下一页 >>共08页
二、插值多项式的余项及误差估计式
  很显然(2.3)式给出的多项式满足插值条件:Ln(xi)=yj,i=0,1,…,n.
  假设另外存在一满足插值条件的不超过n次的多项式Qn(x),设R n(x)= Ln(x)- Qn(x)则R n(x)是不超过n次的多项式,且满足R n(xi)= Ln(xi)- Qn(xi)=yi- yi =0 ( i=0,1,…,n)这说明一个不超过n次的多项式R n(x)具有n+1个不同零点,这只有R n(x)≡0,即 :
  L(x)= Qn(x)
  这就证明了满足插值条件,不超过n次的插值多项式是唯一的。
  设Ln(x)是函数y= f(x),不超过n次的拉格朗日插值多项式,
  则当x=xi时,有Ln(x)=yj= f(xi),(i=0,1,…,n).
  当 x≠xi时,Ln(x) 与f(x)一般是不相等的,其差函数 R n(x)= f(x)- Ln(x)称为拉格朗日插值余项(或拉格朗日插值误差)。
  定理2.1 函数f(x) 在区间[a,b]上存在n+1阶导数,则有拉格朗日插值余项为
  
  证明  
  
  即x0,x1,…,xn皆为Rn(x)的零点知Rn(x)含有因子ω(x),设Rn(x)=K(x) ω(x)
  其中K(x)为待定函数.为求出K(x),我们引进辅助函数g(t)=f(t)- Ln(t)- K(x) ω(t)
  则g(t)在[a,b]上至少有n+2个互异零点x0,x1,…,xn,x,且存在n+1阶导数.在n+2个零点构成的n+1个子区间上,应用微分学罗尔定理,则每个子区间中至少有g/(t)的一个零点 ,从而在[a,b]内至少有g/(t)的n+1个零点.在这n+1个零点构成的n个子区间上,再应用罗尔定理得在[a,b]内至少有g//(t)的n个零点,…在[a,b]内至少有g(n+1)(t)的一个零点,设为ξ,则有
  
  于是可得
  
  
     << 上一页 05 下一页 >>共08页
若记
  
  则有
  
  (2.5)式称为拉格朗日插值误差估计式
  对于线性插值,其余项为
  
  对于二次插值,其余项为
  
  例1 已知 用线性插值计算 ,并估计误差。
     取最接近x=5的两点x0=4,x1=9为插值节点,两个插值基函数分别为
       
  故有
  
  
  下面估计误差
  
  因为
  所以
     << 上一页 06 下一页 >>共08页
例2 已知的函数表

   x

   0

   1

   2

   y

   8

   -7.5

   -18

  求在[0,2]内的零点近似值。
    因为yi关于x严格单调减少,用反插值法求f(x) 零点的近似值比较简单,
  具体作法如下:
  先作反函数表  

   x

   8

   -7.5

   -18

   y

   0

   1

   2

  将节点x0=8,x1=-7.5,x2=-18及对应函数值y0=0,y1=1,y2=2代入二次拉格朗日插值多项式(2.2),再令x=0,得
  
  于是得f(x)在[0,2]内零点
  值得注意的是,只有所给函数(或函数表)在[a,b]上严格单调情况下,才能使用反插值方法,否则可能得出错误结果。
     << 上一页 07 下一页 >>共08页
练习 2.1
  1.已知函数表

   x

   0

   1

   2

   y

   1

   3

   5

  求抛物插值多项式 及其余项。
  2.已知插值基函数
  证明:当 时,
  习题2
  3. 已知连续函数 函数表

  

  

  

  

  求 内近似根。
     << 上一页 08 首 页 >>共08页
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值