数值计算(二)——插值计算(1)拉格朗日插值法

插值问题

设函数 f f f定义在 [ a , b ] [a,b] [a,b]上,设 x 1 , x 2 , . . . , x n ∈ [ a , b ] x_1,x_2,...,x_n\in[a,b] x1,x2,...,xn[a,b] n + 1 n+1 n+1个相异节点,令 y i = f ( x i ) , i = 0 , 1 , . . . , n y_i=f(x_i),i=0,1,...,n yi=f(xi),i=0,1,...,n插值法就是构造一个便于计算的简单函数 φ \varphi φ来近似地替代 f f f,并满足:

φ ( x i ) = f ( x i ) , i = 0 , 1 , . . . , n \varphi(x_i)=f(x_i),i=0,1,...,n φ(xi)=f(xi),i=0,1,...,n

对任意的 x ∈ [ a , b ] , φ ( x ) x\in[a,b],\varphi(x) x[a,b],φ(x)作为 f ( x ) f(x) f(x)的近似值,通常将 f f f记作被插值函数, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn称为插值节点, φ \varphi φ称为插值函数, φ ( x i ) = f ( x i ) , i = 0 , 1 , . . . , n \varphi(x_i)=f(x_i),i=0,1,...,n φ(xi)=f(xi),i=0,1,...,n为插值条件,用多项式作为插值函数的插值法叫做多项式插值法,相应的多项式称为插值多项式。

拉格朗日插值法

设函数 f f f n + 1 n+1 n+1个相异节点 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn上的值 f ( x 0 ) , f ( x 1 ) , f ( x 2 ) , . . . , f ( x n ) f(x_0),f(x_1),f(x_2),...,f(x_n) f(x0),f(x1),f(x2),...,f(xn)是已知的,令 ℘ n \wp_n n使得
P ( x i ) = f ( x i ) , i = 0 , 1 , . . . , n P(x_i)=f(x_i),i=0,1,...,n P(xi)=f(xi),i=0,1,...,n
对于给定的 n + 1 n+1 n+1个节点 x i , i = 0 , 1 , . . . , n x_i,i=0,1,...,n xi,i=0,1,...,n
l i ( x ) = ∏ i = 0 , j ≠ i n x − x j x i − x j , i = 0 , 1 , 2 , . . . , n , l i , i = 0 , 1 , 2 , . . . , n l_i(x)=\prod\limits_{i=0,j\neq i}^n\frac{x-x_j}{x_i-x_j},i=0,1,2,...,n,l_i,i=0,1,2,...,n li(x)=i=0,j=inxixjxxj,i=0,1,2,...,n,li,i=0,1,2,...,n,是n次多项式并满足:
l i ( x i ) = { 1 j = i 0 j ≠ i l_i(x_i)=\begin{cases}1& j = i \\0& j\neq i\end{cases} li(xi)={10j=ij=i,令 L n ( x ) = ∑ i = 0 n f ( x i ) l i ( x ) , L_n(x)=\sum\limits_{i=0}\limits^{n}{f(x_i)l_i(x)}, Ln(x)=i=0nf(xi)li(x),显然, L n = ℘ n L_n=\wp_n Ln=n并满足插值条件: L n ( x j ) = f ( x i ) , j = 0 , 1 , 2 , . . . n . L_n(x_j)=f(x_i),j=0,1,2,...n. Ln(xj)=f(xi),j=0,1,2,...n.,写成上面连乘形式的n次多项式 L n L_n Ln被称为n次 L a g r a n g e Lagrange Lagrange插值多项式, l i ∈ ℘ n ( i = 0 , 1 , 2 , . . . n ) l_i\in\wp_n(i=0,1,2,...n) lin(i=0,1,2,...n)称为n次 L a g r a n g e Lagrange Lagrange插值基函数。

>定理1:设 p ∈ ℘ n , p p\in\wp_n,p pn,p的零点大于n ( p 的 l 重 零 点 x ∗ 计 为 l 个 零 点 ) (p的l重零点x^*计为l个零点) (plxl),那么p恒为零。

>定理2:给定 n + 1 n+1 n+1个相异的节点 x 0 , x 1 , . . . x n ∈ [ a , b ] 和 n + 1 个 x_0,x_1,...x_n\in[a,b]和n+1个 x0,x1,...xn[a,b]n+1函数值 f ( x 0 ) , f ( x 1 ) , . . . , f ( x n ) f(x_0),f(x_1),...,f(x_n) f(x0),f(x1),...,f(xn)那么存在唯一 n n n次多项式 p ∈ ℘ n p\in\wp_n pn满足插值条件 P ( x i ) = f ( x i ) , i = 0 , 1 , . . . , n P(x_i)=f(x_i),i=0,1,...,n P(xi)=f(xi),i=0,1,...,n
证明过程:在这里插入图片描述

插值余项:

x 0 , x 1 , . . . x n ∈ [ a , b ] x_0,x_1,...x_n\in[a,b] x0,x1,...xn[a,b]是相异节点, f ∈ C n + 1 [ a , b ] , L n f \in C^{n+1} [a,b],L_n fCn+1[a,b],Ln为满足插值条件的n次插值多项式,对于任何 x ∈ [ a , b ] x\in[a,b] x[a,b]存在 ξ = ξ ( x ) ∈ ( a , b ) \xi=\xi(x)\in(a,b) ξ=ξ(x)(a,b)使得 R n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) R_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}\omega_{n+1}(x) Rn(x)=(n+1)!fn+1(ξ)ωn+1(x),其中 ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) \omega_{n+1}(x)=(x-x_0)(x-x_1)...(x-x_n) ωn+1(x)=(xx0)(xx1)...(xxn).

推论

推论一:在上述条件下,若 max ⁡ a < x < b ∣ f n + 1 ( x ) ∣ ≤ M \max \limits_{a<x<b}\mid f^{n+1}(x)\mid\leq M a<x<bmaxfn+1(x)M,那么有 ∣ R ( x ) ∣ ≤ M ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ \mid R_(x) \mid\leq \frac{M}{(n+1)!}\mid \omega_{n+1}(x) \mid R(x)(n+1)!Mωn+1(x)
推论二:设 a = x 0 < x 1 < x 2 . . . < x n = b , h = max ⁡ 1 ≤ j ≤ n ( x j − x j − 1 ) , f ∈ C n + 1 [ a , b ] , L n a=x_0<x_1<x_2...<x_n=b,h=\max \limits_{1\leq j \leq n}(x_j-x_{j-1}),f\in C^{n+1}[a,b],L_n a=x0<x1<x2...<xn=b,h=1jnmax(xjxj1),fCn+1[a,b],Ln f f f n n n次插值多项式,那么有: ∥ f − L n ∥ ∞ ≤ h n + 1 4 ( n + 1 ) ∥ f n + 1 ∥ ∞ \lVert f-L_n \lVert_\infty \leq\frac{h^{n+1}}{4(n+1)}\lVert f^{n+1}\lVert_\infty fLn4(n+1)hn+1fn+1
有兴趣的自己去证明吧,哈哈哈哈!!!!!

整道基础题巩固基础知识点

在这里插入图片描述

欢乐的时光总是短暂的,让我们下一次再见!!!
good good study,day day up! (study hard, improve every day)
预知后事,请听下回分解!!!!
  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值