【机器学习】谷歌教你学 AI -第一讲机器学习是什么?


CDA字幕组 翻译整理

本文为 CDA 数据分析师原创作品,转载需授权




最近,Google Cloud发布了名为“AI Adventures”的系列视频,介绍了机器学习的概念、学习方法和一些工具。


每个视频时间在5-15分钟内不等,用简单易懂的语言让初学者了解AI以及机器学习的方方面面。

观看更多国外公开课,点击"阅读原文"


视频主讲人是Google Cloud的开发者和布道师 Yufeng Guo,一位年轻有为的华裔小哥哥。这位小哥哥逻辑清晰,语音纯正。在观看视频的同时不仅能学习AI方面的知识,对英语学习也很有帮助哦。


CDA字幕组目前在对该系列视频进行汉化,今天带来第一讲:机器学习是什么?之后将继续连载,欢迎关注和支持~


附有中文字幕的视频如下:


AI Adventures-第一讲机器学习是什么


class="video_iframe" data-vidtype="2" allowfullscreen="" frameborder="0" data-ratio="1.7647058823529411" data-w="480" scrolling="no" data-src="http://v.qq.com/iframe/player.html?vid=k0525m9i852&width=670&height=376.875&auto=0" style="display: block; width: 670px !important; height: 376.875px !important;" width="670" height="376.875" data-vh="376.875" data-vw="670" src="http://v.qq.com/iframe/player.html?vid=k0525m9i852&width=670&height=376.875&auto=0"/>


针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:


(文末有彩蛋! )


世界中充满了数据,大量的数据。图片、音乐、文字、电子表格还有视频。而且在短时间内丝毫没有放缓的趋势。机器学习给所有的数据带来意义。



Arthur C. Clarke有一句名言(英国作家 发明家 主要作品《2001太空漫游》)。


"任何足够先进的技术无异于魔法"。


我发现与其说机器学习是魔法,不如说是可以利用的工具和技术,从而用你的数据解答问题。



这是Cloud AI Adventures系列视频,我叫 Yufeng Guo。在每一期视频中我们将探究机器学习的艺术 科学以及工具。在这一过程中我们将发现,获得精彩的体验以及得出有价值的见解是多么的简单。


机器学习的价值刚刚开始显现。如今世界中充满了数据,这些数据不仅仅由人类产生的,还由计算机、手机和其他设备产生。在将来这只会持续地增加。



我们身边的数据

从传统层面来说,人们分析数据并改进系统去适应数据模式的变化。然而随着数据量超过人类理解以及手动编写规则的能力,我们将越来越多的转向自动系统。自动系统能够从数据中学习,更重要的是从数据的变化中学习,从而适应所面临的大转变。


机器学习无处不在

在如今使用的产品中,我们总可以看到机器学习的身影。这些产品背后都有机器学习的参与,但这不总是那么明显。


比如给照片中的物体和人加标签,这很显然有机器学习的参与。但是视频网站自动推荐接下来看的视频,就不那么明显了。然而这也是通过机器学习实现的。



当然,最明显的例子就是谷歌搜索引擎。每次你使用谷歌搜索,当中都包括了很多机器学习系统。从理解你搜索的文字,到根据你的个人兴趣调节搜索结果。


比如当你搜索"Java"时,根据你是咖啡方面的专家还是开发人员把哪个结果放在最上面。是优先显示Java咖啡豆,还是Java编程语言。也许你两者都是。


如今机器学习的即时应用已经无处不在,包括图像识别、欺诈检测以及推荐系统。同时还包括文本系统和语音系统。


这些强大的功能可以适用于广泛的领域,比如糖尿病视网膜病和皮肤癌检测、零售业以及交通方面,比如自动停车和自动驾驶汽车。



不远的将来

不久之前,当公司和产品中包含机器学习技术这会被认为很新奇。而现在每家公司都设法在产品中使用机器学习,这迅速成为了理所应该的特点。正如我们期待公司提供,能够在手机设备上运行的网站或者相关APP。


很快我们的科技将具有个性化,有洞察力以及能够自我修正。


随着我们利用机器学习,让人类的各种任务比起以往能够更快更容易完成。我们可以看得更长远一些,比如机器学习能够帮助我们达成凭借一己之力无法完成的任务。


幸运的是,如今利用机器学习并不难。工具发展的很不错,你所需要的就是数据、开发人员以及敢于冒险的意志。



使用数据解答问题

在这里,我把机器学习的定义减少为五个词。


"使用数据解答问题"

(using data to answer questions)



我们可以把该定义分成两个部分:"使用数据" 和"解答问题”。


这两部分大致论述了机器学习的两方面,两者都一样重要"使用数据"也就是我们所说的训练;”解答问题"也就是做出预测或者推理。


下面让我们简单看下这两部分。训练就是使用数据来创建和调整预测模型,该预测模型之后可以对新的数据进行预测,并解答那些问题。随着收集的数据越来越多,模型会不断改进,从而部署出新的预测模型。



数据是关键

你可能注意到了,整个过程的关键部分是数据,一切都依赖着数据。


数据是开启机器学习的钥匙,同样,机器学习也是开启隐藏在数据中见解的钥匙。


以上只是机器学习的简介,关于其重要性和一些应用。机器学习是一个广泛的领域,贯穿于各种从数据中得出答案的技术。


接下来还有什么

在之后的视频中我们将讲解,针对给出的数据集应该用哪些方法以及关于你想解答的问题,还包括提供实现这些功能的工具。


下一个视频中我们将深入探讨,在给出更多细节的情况下,如何进行机器学习的具体步骤。通过一步步递进深入,关于如何解答机器学习问题。


下期预告:机器学习的七个步骤






谷歌教你学 AI -第二讲机器学习的7个步骤


翻译: VV  校对: Mika

本文为 CDA 数据分析师原创作品,转载需授权




Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。

观看更多国外公开课,点击"阅读原文"


上一期主要讲了机器学习的概念(谷歌教你学 AI -第一讲机器学习是什么?),今天让我们一起看到第二讲:机器学习的7个步骤。


主讲人还是来自Google Cloud的开发人员,华裔小哥Yufeng Guo。让我们在学习AI知识的同时来提高英语吧。


CDA字幕组目前在对该系列视频进行汉化,之后将继续连载,欢迎关注和支持~


附有中文字幕的视频如下:


AI Adventures-第二讲机器学习的7个步骤

class="video_iframe" data-vidtype="2" allowfullscreen="" frameborder="0" data-ratio="1.7647058823529411" data-w="480" scrolling="no" data-src="http://v.qq.com/iframe/player.html?vid=o05267wgt03&width=670&height=376.875&auto=0" style="display: block; width: 670px !important; height: 376.875px !important;" width="670" height="376.875" data-vh="376.875" data-vw="670" src="http://v.qq.com/iframe/player.html?vid=o05267wgt03&width=670&height=376.875&auto=0"/>

针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:


(文末有彩蛋! )



从检测皮肤癌到给黄瓜分类,以及检测需要维修的电梯,机器学习赋予了计算机系统全新的能力。但它的背后到底是如何运作的呢?我们来看一个简单的例子,并借此来聊一聊运用机器学习从你的数据中得到信息的过程。




欢迎来到Cloud AI Adventures,我的名字叫Yufeng Guo。在这个节目里,我们会探索机器学习的艺术性、科学性以及相关工具。


假设我们要构建一个系统用来判断酒水是红酒还是啤酒。我们构建的这个问答系统称为模型,构建这个模型的过程称为训练


机器学习中训练的目的是建立一个准确模型,在大多数情况下能够地准确回答问题。但是为了训练这个模型,我们需要收集用于训练的数据,这就是我们开始着手的地方。


红酒还是啤酒

我们通过装着红酒或啤酒的杯子来收集数据,酒水中包含了方方面面的数据信息。比如泡沫的数量、杯子的形状等。



但是出于我们的目的,只需要两个简单的信息。颜色,记录为光的波长;酒精含量,记录为百分比。希望仅仅通过这两个因素,我们能够分辨出这两种酒。从现在开始我们把这两点称为特征,颜色和酒精含量。


第一步就是去杂货店买各种不同的酒,以及用于测量的设备。光谱仪用来衡量颜色,比重计用来衡量酒精含量。



第1步:收集数据

一旦设备和酒都齐全了,就可以开始进行机器学习真正的第一步:收集数据。


这一步非常重要,因为你所收集数据的质量和数量将直接决定预测模型的效果。这个例子里 我们收集的数据就是,每种酒水的颜色和酒精含量。


这样我们就可以得出一个表格,关于每种酒的颜色和酒精含量,是啤酒还是红酒。这将成为我们的训练数据。



第2步:数据准备

经过几小时的测量,我们得到了训练数据,也许还喝了几杯。下面是机器学习的第二步:数据准备。我们将数据加载到合适的地方。进行处理从而用于机器学习的训练。



首先把所有数据放在一起,任意排列。不要让数据的顺序影响到学习的效果,排列并不是判断酒水种类的因素。换句话说,我们不想让序列中酒水的前后排列顺序,影响对酒水种类的判断。


这时也可以对数据进行相关可视化,帮助判断不同变量之间是否存在相应关系,以及是否存在数据失衡


例如,如果我们收集的数据点中啤酒的数据要远多于红酒,那么训练出来的模型就会有严重的偏差,偏向把酒水都判断为啤酒。因为在大部分情况下这不会错。然而在实际情况中,模型会处理差不多数量的啤酒和红酒。意味着判断为啤酒一半情况都是错的。



我们还需要把数据分成两部分,用于训练模型的第一部分将是数据集的主要数据;第二部分用于评估训练模型的效果。


我们不想把训练用的数据用于评估,因为模型会记住这些问题。就像你不会把数学作业里的问题作为考试内容一样。



有时我们收集的数据需要其他方式的调整和处理。比如去重、标准化、误差修正等等。这些都在数据准备过程中进行。在这里我们不需要进一步的数据准备,所以让我们继续。


第3步:选择模型

我们工作流程的下一步是:选择模型。


在过去研究者和数据科学家,已经建立了很多模型。有些非常适用于图像数据;有些适用于文字、音乐这种序列数据;有的适用于数字数据,还有一些适用于文本数据。



这里我们只有两个特征:颜色和酒精含量,我们用一个小型线性模型就足够了。这个模型很简单但足以完成任务。


第4步:训练

现在进行下一步,这通常被认为是机器学习的主体部分:训练。


这一步我们将用数据,逐步提高模型预测酒水为红酒或啤酒的能力。这有点类似初次学开车,一开始初学者完全不知道踏板 把手、开关的作用,或者什么时候要用到。但是经过许多次的练习和纠错,就能成为有驾照的司机了。在开车一年之后就成为老司机了。在现实中驾驶提高了驾驶水平,磨练了技术。



针对酒水我们将从更小的范围着手。直线方程是y=m*x+b。x是输入,m是斜率,b是y轴截距,y是直线x位置上的值。我们能够调整和训练的值只有m和b,m是斜率,b是y轴截距。没有其他改变直线位置的方式,因为变量只有x输入和y输出。



机器学习中可能存在很多m,因为有很多特征。这些值通常构成矩阵,称为w即权重矩阵。类似的我们把b集合在一起,称为偏差



训练过程包含对w和b赋予一些随机数初始化,以及尝试用这些值预测输出。可以想象一开始结果会很糟糕。但是我们可以将模型预测值与应该得出的值进行比较,进而调整w和b的值。这样下一次能够得出更准确的预测。


然后不断重复这个过程。每次更新权重和变量的迭代或周期称为一个训练步骤(training step)。看看这对我们的数据集具体意味着什么。



就像在数据中任意画一条线。随着训练的进展,这条线一步步移动,逐步接近区分红酒和啤酒的理想方式。


第5步:评估

一旦训练完成,就要进行评估,查看模型的效果。


这时就要用到之前预留的数据。评估让我们用训练中未使用的数据测试模型,这个指标让我们用新数据测试模型的性能,这可以代表模型在现实情况中的效果


根据经验法则,我一般将训练和评估数据按照80/20或者70/30分配。大多情况下取决于原始源数据集的大小。如果数据很多可能就不需要太多的测试数据集。



第6步:参数调整

完成评估之后你想看看是否能够进一步提高训练。可以通过调整一部分参数,我们隐含假设有一些参数在训练时已经调整了。现在可以回头看看测试这些假设,试试这些值。


举个例子,有一个参数我们可以调整,即在训练中训练数据集运行了多少次。可以多次使用这些数据,从而提高精度。


另外一个参数是学习率,这规定了在每一步线移动的幅度。根据上一次训练步骤得到的信息,这些值都会影响模型的准确性以及训练时长。


 


对于更复杂的模型,初始条件也会大大影响训练结果。根据模型开始训练时,初始值是为0还是其他值的分布以及分布是什么,得出的结果会有区别。


可以看到训练的这一阶段,有很多因素值得考虑。重要的是要定义什么决定了模型的好坏。否则将花很长的时间调整参数。


这些参数通常被称为超参数。调整超参数的过程比起科学更像是艺术。这是实验性的过程,并很大程度上取决于具体的数据集、模型和训练过程。



一旦满意你的训练和超参数,通过评估步骤,终于可以做一些有用的事情了。


第7步:预测

机器学习用数据来解答问题,因此预测或推断就是解答问题的步骤,这是所有工作的重点,即实现机器学习价值的地方。


我们终于可以用模型,根据颜色和酒精含量,预测酒水为红酒还是啤酒。



总结

机器学习的强大在于,我们可以用模型来测定和区分红酒与啤酒,而不是通过人的主观判断或者经验。你可以把今天所讲的概念,拓展到适用这些规则的其他领域:


机器学习的7个步骤:


· 收集数据

· 准备数据

· 选择模型

· 训练

· 评估

· 超参数调整

· 预测


TensorFlow Playground

如果你想了解更多关于训练和参数的信息,可以访问TensorFlow Playground。这是完全基于浏览器的机器学习沙盒,你可以尝试不同的参数,用模拟数据进行训练。不用担心 ,你不会把网站崩掉。



下期预告

当然在之后的视频中,我们会遇到更多的步骤和区别。但这作为帮我们理解问题很好的基本框架,用通用的语言考虑每一步,并在以后更加深入。


在下一期的AI adventures,我们将用代码构建第一个真正的机器学习模型。





人工智能赛博物理操作系统

AI-CPS OS

人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。


AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。


领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:

  1. 重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?

  2. 重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?

  3. 重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?

AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:

  1. 精细种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。

  2. 智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。

  3. 高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。

  4. 不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。

  5. 边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。

AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:

  1. 创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;

  2. 对现有劳动力和实物资产进行有利的补充和提升,提高资本效率

  3. 人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间


给决策制定者和商业领袖的建议:

  1. 超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;

  2. 迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新

    评估未来的知识和技能类型;

  3. 制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开

    发过程中确定更加明晰的标准和最佳实践;

  4. 重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临

    较高失业风险的人群;

  5. 开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。


子曰:“君子和而不同,小人同而不和。”  《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。


如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!


新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。





产业智能官  AI-CPS



用“人工智能赛博物理操作系统新一代技术+商业操作系统“AI-CPS OS:云计算+大数据+物联网+区块链+人工智能)在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链






长按上方二维码关注微信公众号: AI-CPS,更多信息回复:


新技术“云计算”、“大数据”、“物联网”、“区块链”、“人工智能新产业:智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市、“智能驾驶”新模式:“财富空间、“数据科学家”、“赛博物理”、“供应链金融”


官方网站:AI-CPS.NET




本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!



版权声明产业智能官(公众号ID:AI-CPS推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值