[用vLLM和Langchain提升LLM推理和服务效率]

# 引言

随着大规模语言模型(LLM)的普及和应用需求的增加,快速高效地进行模型推理和服务成为开发者关注的焦点。本文将介绍vLLM,一个易于使用且高效的库,能够为LLM提供最先进的服务吞吐量和推理能力。我们将探讨如何通过vLLM和Langchain结合使用,满足多样化的应用场景和需求。

# 主要内容

## vLLM的优势

- **高效的推理和服务**:vLLM通过优化的CUDA内核和PagedAttention技术,实现了高效的注意力键值存储管理。
- **连续批处理请求**:支持对连续输入请求进行批处理,提高处理效率。
- **分布式推理**:支持多GPU的分布式推理和服务。

## 安装vLLM

要开始使用vLLM,请首先安装vllm Python包:

```sh
%pip install --upgrade --quiet vllm -q

使用vLLM进行模型推理

以下示例展示了如何使用vLLM和Langchain进行简单的LLM推理:

from langchain_community.llms import VLLM

llm = VLLM(
    model="mosaicml/mpt-7b",
    trust_remote_code=True,  # 对于HF模型是必需的
    max_new_tokens=128,
    top_k=10,
    t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值