# 引言
随着大规模语言模型(LLM)的普及和应用需求的增加,快速高效地进行模型推理和服务成为开发者关注的焦点。本文将介绍vLLM,一个易于使用且高效的库,能够为LLM提供最先进的服务吞吐量和推理能力。我们将探讨如何通过vLLM和Langchain结合使用,满足多样化的应用场景和需求。
# 主要内容
## vLLM的优势
- **高效的推理和服务**:vLLM通过优化的CUDA内核和PagedAttention技术,实现了高效的注意力键值存储管理。
- **连续批处理请求**:支持对连续输入请求进行批处理,提高处理效率。
- **分布式推理**:支持多GPU的分布式推理和服务。
## 安装vLLM
要开始使用vLLM,请首先安装vllm Python包:
```sh
%pip install --upgrade --quiet vllm -q
使用vLLM进行模型推理
以下示例展示了如何使用vLLM和Langchain进行简单的LLM推理:
from langchain_community.llms import VLLM
llm = VLLM(
model="mosaicml/mpt-7b",
trust_remote_code=True, # 对于HF模型是必需的
max_new_tokens=128,
top_k=10,
t