引言
在快速发展的人工智能时代,处理大型语言模型(LLM)的需求不断增加。vLLM是一个专为LLM推理和服务优化的库,提供了业界领先的服务吞吐量、优化的CUDA内核以及强大的请求管理功能。本文将带你了解如何结合langchain和vLLM,实现高效的LLM应用。
主要内容
vLLM概述
vLLM通过PagedAttention技术高效管理模型的注意力记忆,同时支持连续批量处理传入请求,提升整体性能。其分布式推理功能使得在多GPU环境下的推理更加高效。
安装vLLM
首先,确保你已经安装了vllm Python包:
%pip install --upgrade --quiet vllm -q
设置并使用vLLM
下面的示例展示了如何使用vLLM处理简单的自然语言查询:
from langchain_community.llms import VLLM
# 使用API代理服务提高访问稳定性
llm = VLLM(<