文章目录
- 🍀引言
- 🍀数据集
- 🍀特征工程(Feature Engineering)
- 🍀模型(Model)
- 🍀算法(Algorithm)
- 🍀训练(Training)
- 🍀预测(Prediction)
- 🍀泛化(Generalization)
- 🍀监督学习(Supervised Learning)
- 🍀无监督学习(Unsupervised Learning)
- 🍀强化学习(Reinforcement Learning)
- 🍀深度学习(Deep Learning)
- 🍀过拟合(Overfitting)
- 🍀欠拟合(Underfitting)
- 🍀交叉验证(Cross-validation)
- 🍀超参数(Hyperparameter)
- 🍀神经网络(Neural Network)
- 🍀梯度下降(Gradient Descent)
- 🍀数据增强(Data Augmentation)
🍀引言
在当今信息时代的浪潮中,机器学习成为了一种引领技术潮流的重要方法。作为人工智能的一支重要分支,机器学习通过让计算机从经验中学习和改进,实现了许多引人瞩目的成就。在机器学习的领域中,有许多常用的术语与概念,下面将为您解析这些术语,并介绍它们在实际应用中的作用。

🍀数据集
数据集(Dataset):即机器学习模型所用来训练和评估的数据的集合。数据集的质量和规模直接影响机器学习模型的性能。
在实际应用中,我们需要处理大规模的数据集,例如图片、文字、音频等。对数据集进行预处理、特征提取和标注等操作,能够帮助模型更好地学习数据中的模式和规律。
🍀特征工程(Feature Engineering)
指对原始数据进行处理,提取出具有代表性和辨识度的特征。特征工程能够帮助机器学习模型更好地理解数据,并提高模型的性能。
常见的特征工程操作包括:特征选择、特征变换和特征创建等。通过选择最相关的特征、进行合适的数据变换和创造新的特征,可以提高模型的准确性和泛化能力。
🍀模型(Model)
机器学习模型是对数据集中的模式和规律进行概括和表达的数学描述。模型可以是线性的、非线性的、概率的等等,它们通过训练数据进行学习,再用来做预测或者分类。
常见的机器学习模型包括:线性回归、决策树、支持向量机、神经网络等。根据不同任务和数据的特点,选择适合的模型是机器学习的重要一环。
机器学习基础概念解析

本文介绍了机器学习中的关键概念,包括数据集、特征工程、模型选择、训练过程、预测、泛化能力以及监督学习、无监督学习和强化学习的区别。同时讨论了深度学习、过拟合与欠拟合的问题,以及如何通过交叉验证和超参数调整来优化模型性能。此外,还提到了神经网络和梯度下降在模型训练中的作用。
最低0.47元/天 解锁文章
1008





