静态和动态电子的机器学习技术解析
在当今的科学研究和工程应用中,机器学习技术在解决电子相关问题方面展现出了巨大的潜力。本文将深入探讨两种重要的机器学习方法:基于MALA的替代模型训练与测试,以及物理信息神经网络(PINNs)在求解偏微分方程中的应用。
1. 基于MALA的替代模型训练与测试
在进行模型训练之前,需要选择合适的网络架构。对于一个小示例,我们选择了经过充分测试的网络架构,即一个具有四个隐藏层的神经网络,其中前三个隐藏层各包含800个神经元,最后一个隐藏层包含250个神经元。
1.1 模型训练
- 数据准备 :由于本示例中选择的铍单元格比之前研究中使用的铝数据小,因此需要更多的原子快照来保证模型性能。我们使用四个原子快照进行模型训练,一个原子快照作为验证数据,用于在训练过程中监控模型性能。
- 训练环境 :训练在标准GPU上进行,使用MALA中实现的PyTorch框架。
- 优化器选择 :为了评估训练例程本身的性能,我们使用ADAM优化器训练了五个独立的神经网络。训练在86 - 154个周期内实现了收敛。
1.2 模型测试
训练完成后,我们使用剩余的14个未在训练过程中使用的快照作为测试集来确认模型性能。结果表明,该模型能够非常准确地预测所有14个铍快照的总能量。除了总能量,电子密度和态密度(DOS)也是通常通过密度泛函理论计算的重要量,MALA也能准确预测这些量。
为了量化模型的鲁棒性,我们选择对模型进行总共五次训练和测试