基于pytorh的MNIST手写体识别代码

定义卷积神经网络CNN.py

import torch.nn as nn
import torch.nn.functional as F


class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)
        self.maxpool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2)
        self.maxpool2 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(32*7*7, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.maxpool1(x)
        x = F.relu(self.conv2(x))
        x = self.maxpool2(x)
        x = x.view(x.size(0), -1)
        x = self.fc1(x)
        return x

训练代码(使用gpu):

import torch
import torchvision
import torch.utils.data as Data
from CNN import CNN

DOWNLOAD = False
if __name__ =='__main__':
    train_data=torchvision.datasets.MNIST(
        root='./mnist',
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=DOWNLOAD,
    )
    cnn = CNN()
    train_loader = Data.DataLoader(dataset=train_data, batch_size=5, shuffle=True)
    test_data = torchvision.datasets.MNIST(root='./mnist/',train=False)
    test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000] / 255.
    test_y = test_data.test_labels[:2000]
    have_cuda = torch.cuda.is_available()
    if have_cuda:
        cnn.cuda()
        test_x = test_x.cuda()
    optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
    loss_func = torch.nn.CrossEntropyLoss()
    for epoch in range(1):
        for step, (b_x, b_y) in enumerate(train_loader):
            if have_cuda:
                b_x = b_x.cuda()
                b_y = b_y.cuda()
            output = cnn(b_x)
            loss = loss_func(output, b_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if step % 50 == 0:
                test_output = cnn(test_x)
                pred_y = torch.max(test_output.cpu(), 1)[1].data.numpy()
                accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy(),
                      '| test accuracy: %.2f' % accuracy)

    test_output = cnn(test_x[:10])
    pred_y = torch.max(test_output.cpu(), 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')



训练结果:

Epoch:  0 | train loss: 0.0001 | test accuracy: 0.98
Epoch:  0 | train loss: 0.0043 | test accuracy: 0.98
[7 2 1 0 4 1 4 9 5 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number

 

Code provided by Ruslan Salakhutdinov and Geoff Hinton Permission is granted for anyone to copy, use, modify, or distribute this program and accompanying programs and documents for any purpose, provided this copyright notice is retained and prominently displayed, along with a note saying that the original programs are available from our web page. The programs and documents are distributed without any warranty, express or implied. As the programs were written for research purposes only, they have not been tested to the degree that would be advisable in any important application. All use of these programs is entirely at the user's own risk. How to make it work: 1. Create a separate directory and download all these files into the same directory 2. Download from http://yann.lecun.com/exdb/mnist the following 4 files: o train-images-idx3-ubyte.gz o train-labels-idx1-ubyte.gz o t10k-images-idx3-ubyte.gz o t10k-labels-idx1-ubyte.gz 3. Unzip these 4 files by executing: o gunzip train-images-idx3-ubyte.gz o gunzip train-labels-idx1-ubyte.gz o gunzip t10k-images-idx3-ubyte.gz o gunzip t10k-labels-idx1-ubyte.gz If unzipping with WinZip, make sure the file names have not been changed by Winzip. 4. Download Conjugate Gradient code minimize.m 5. Download Autoencoder_Code.tar which contains 13 files OR download each of the following 13 files separately for training an autoencoder and a classification model: o mnistdeepauto.m Main file for training deep autoencoder o mnistclassify.m Main file for training classification model o converter.m Converts raw MNIST digits into matlab format o rbm.m Training RBM with binary hidden and binary visible units o rbmhidlinear.m Training RBM with Gaussian hidden and binary visible units o backprop.m Backpropagation for fine-tuning an autoencoder o backpropclassify.m Backpropagation for classification using "encoder" network o CG_MNIST.m Conjugate Gradient optimization for fine-tuning an autoencoder o CG_CLASSIFY_INIT.m Co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值