定义卷积神经网络CNN.py
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)
self.maxpool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2)
self.maxpool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(32*7*7, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.maxpool1(x)
x = F.relu(self.conv2(x))
x = self.maxpool2(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
return x
训练代码(使用gpu):
import torch
import torchvision
import torch.utils.data as Data
from CNN import CNN
DOWNLOAD = False
if __name__ =='__main__':
train_data=torchvision.datasets.MNIST(
root='./mnist',
train=True,
transform=torchvision.transforms.ToTensor(),
download=DOWNLOAD,
)
cnn = CNN()
train_loader = Data.DataLoader(dataset=train_data, batch_size=5, shuffle=True)
test_data = torchvision.datasets.MNIST(root='./mnist/',train=False)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000] / 255.
test_y = test_data.test_labels[:2000]
have_cuda = torch.cuda.is_available()
if have_cuda:
cnn.cuda()
test_x = test_x.cuda()
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
loss_func = torch.nn.CrossEntropyLoss()
for epoch in range(1):
for step, (b_x, b_y) in enumerate(train_loader):
if have_cuda:
b_x = b_x.cuda()
b_y = b_y.cuda()
output = cnn(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
test_output = cnn(test_x)
pred_y = torch.max(test_output.cpu(), 1)[1].data.numpy()
accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy(),
'| test accuracy: %.2f' % accuracy)
test_output = cnn(test_x[:10])
pred_y = torch.max(test_output.cpu(), 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')
训练结果:
Epoch: 0 | train loss: 0.0001 | test accuracy: 0.98
Epoch: 0 | train loss: 0.0043 | test accuracy: 0.98
[7 2 1 0 4 1 4 9 5 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number