二分查找的时间复杂度为什么是logN的公式推理

假设有序数组中共有n个元素。需要找到某个元素在数组中的索引。
那么利用二分查找,每次都找中间值与目标值进行比较,从而排除数组中一半的元素。

最坏情况下:

刚开始数组中的元素个数为 n
第一次查找后排除一半的元素,剩余元素个数 n * \frac{1}{2}

第二次查找后又排除一半的元素,剩余元素个数为 n *( \frac{1}{2})^{2}

一次类推,直到进行了 x 次查找后,找到了该元素,此时数组中剩余元素个数为 n * (\frac{1}{2})^{x}

此时,数组中还剩下唯一的元素也就是目标值,所以此时数组中剩余元素个数为 1。

故得到公式 n * (\frac{1}{2})^{x} = 1,由此可得,查找次数 x = {log{N}}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值