BeautyGAN: Instance-level Facial Makeup Transfer with Deep Generative Adversarial Network(ACMMM18)

3 OUR APPROACH: BEAUTYGAN

non-makeup image domain A ⊂ R H × W × 3 A\subset \mathbb{R}^{H\times W\times 3} ARH×W×3,makeup image domain B ⊂ R H × W × 3 B\subset \mathbb{R}^{H\times W\times 3} BRH×W×3

生成器 ( I s r c B , I r e f A ) = G ( I s r c , I r e f ) \left ( I_{src}^B, I_{ref}^A \right )=G\left ( I_{src}, I_{ref} \right ) (IsrcB,IrefA)=G(Isrc,Iref)

输入包括:source image I s r c ∈ A I_{src}\in A IsrcA,reference image I r e f ∈ B I_{ref}\in B IrefB
输出包括:after-makeup image I s r c B ∈ B I_{src}^B\in B IsrcBB,anti-makeup image I r e f A ∈ A I_{ref}^A\in A IrefAA

3.1 Full Objective

在这里插入图片描述
框架图如Fig. 2所示,包括1个生成器 G G G和2个判别器 D A , D B D_A, D_B DA,DB

首先是判别器 D A , D B D_A, D_B DA,DB的目标函数
L D A = E I s r c [ log ⁡ D A ( I s r c ) ] + E I s r c , I r e f [ log ⁡ ( 1 − D A ( I r e f A ) ) ] ( 1 ) \begin{aligned} \mathcal{L}_{D_A}&=\mathbb{E}_{I_{src}}\left [ \log D_A\left ( I_{src} \right ) \right ]\\ &+\mathbb{E}_{I_{src}, I_{ref}}\left [ \log\left ( 1-D_A\left ( I_{ref}^A \right ) \right ) \right ] \qquad(1) \end{aligned} LDA=EIsrc[logDA(Isrc)]+EIsrc,Iref[log(1DA(IrefA))](1)
L D B = E I r e f [ log ⁡ D B ( I s r c ) ] + E I s r c , I r e f [ log ⁡ ( 1 − D B ( I s r c B ) ) ] ( 2 ) \begin{aligned} \mathcal{L}_{D_B}&=\mathbb{E}_{I_{ref}}\left [ \log D_B\left ( I_{src} \right ) \right ]\\ &+\mathbb{E}_{I_{src}, I_{ref}}\left [ \log\left ( 1-D_B\left ( I_{src}^B \right ) \right ) \right ] \qquad(2) \end{aligned} LDB=EIref[logDB(Isrc)]+EIsrc,Iref[log(1DB(IsrcB))](2)
注:公式(1)中 I s r c B I_{src}^B IsrcB I s r c , I r e f I_{src}, I_{ref} Isrc,Iref有关,所以 E \mathbb{E} E的下标为 I s r c , I r e f I_{src}, I_{ref} Isrc,Iref

然后给出 G G G的目标函数,包括adversarial loss、cycle consistency loss、perceptual loss、makeup constrain loss
L G = α L a d v + β L c y c + γ L p e r + L m a k u p ( 3 ) \mathcal{L}_G=\alpha\mathcal{L}_{adv} + \beta\mathcal{L}_{cyc} + \gamma\mathcal{L}_{per} + \mathcal{L}_{makup} \qquad(3) LG=αLadv+βLcyc+γLper+Lmakup(3)
其中 L a d v \mathcal{L}_{adv} Ladv包含如下2项
L a d v = L D A + L D B ( 4 ) \mathcal{L}_{adv}=\mathcal{L}_{D_A}+\mathcal{L}_{D_B} \qquad(4) Ladv=LDA+LDB(4)
注:对于 G G G L a d v \mathcal{L}_{adv} Ladv只涉及fake的部分

D A D_A DA D B D_B DB需要最大化公式(1)和(2), G G G需要最小化公式(3)

3.2 Domain-Level Makeup Transfer

We exploit domain-level makeup transfer as the foundation of instance-level makeup transfer.

本文的目标是instance级别的makeup transfer,总体框架需要先采用domain级别的transfer,再精细化到instance级别

给定一幅图像 x x x F l ( x ) ∈ R C l × H l × W l F_l(x)\in\mathbb{R}^{C_l\times H_l\times W_l} Fl(x)RCl×Hl×Wl表示 x x x在VGG Network中第 l l l层的feature map

两个feature map之间的MSE就是perceptual loss
L p e r = 1 C l × H l × W l ∑ i , j , k E l ( 5 ) \mathcal{L}_{per}=\frac{1}{C_l\times H_l\times W_l}\sum_{i,j,k}E_l \qquad(5) Lper=Cl×Hl×Wl1i,j,kEl(5)
E l = [ F l ( I s r c ) − F l ( I s r c B ) ] i j k 2 + [ F l ( I r e f ) − F l ( I r e f A ) ] i j k 2 ( 6 ) E_l=\left [ F_l\left ( I_{src} \right ) - F_l\left ( I_{src}^B \right ) \right ]_{ijk}^2 + \left [ F_l\left ( I_{ref} \right ) - F_l\left ( I_{ref}^A \right ) \right ]_{ijk}^2 \qquad(6) El=[Fl(Isrc)Fl(IsrcB)]ijk2+[Fl(Iref)Fl(IrefA)]ijk2(6)

perceptual loss的作用是保持图像变换前后的内容大致不变,cycle consistency loss的作用也是保持图像变换前后的对应关系
( I s r c , I r e f ) → G ( I s r c , I r e f ) → G ( G ( I s r c , I r e f ) ) ≈ ( I s r c , I r e f ) ( 7 ) \left ( I_{src}, I_{ref} \right )\rightarrow G\left ( I_{src}, I_{ref} \right )\rightarrow G\left ( G\left ( I_{src}, I_{ref} \right ) \right )\approx \left ( I_{src}, I_{ref} \right ) \qquad(7) (Isrc,Iref)G(Isrc,Iref)G(G(Isrc,Iref))(Isrc,Iref)(7)
cycle consistency loss定义如下
L c y c = E I s r c , I r e f [ d i s t ( I s r c r e c , I s r c ) + d i s t ( I r e f r e c , I r e f ) ] ( 8 ) \mathcal{L}_{cyc}=\mathbb{E}_{I_{src},I_{ref}}\left [ dist\left ( I_{src}^{rec},I_{src} \right ) + dist\left ( I_{ref}^{rec},I_{ref} \right ) \right ] \qquad(8) Lcyc=EIsrc,Iref[dist(Isrcrec,Isrc)+dist(Irefrec,Iref)](8)
其中 ( I s r c , I r e f ) = G ( G ( I s r c , I r e f ) ) \left ( I_{src},I_{ref} \right )=G\left ( G\left ( I_{src}, I_{ref} \right ) \right ) (Isrc,Iref)=G(G(Isrc,Iref)),距离度量 d i s t ( ⋅ ) dist(\cdot) dist()可取 L 1 L_1 L1 norm、 L 2 L_2 L2 norm等

3.3 Instance-level Makeup Transfer

以上loss项保证了domain级别的transfer,为了增强到instance级别的transfer,需要增加约束条件来保证makeup style consistency

We observe that facial makeup could be visually recognized as color distributions.

作者认为makeup style transfer本质上是color changing

作者利用了一种color changing的方法,Histogram Matching (HM),作用在图像上,从而引入additional histogram loss on pixel-level,能够使得 I s r c B I_{src}^B IsrcB I r e f I_{ref} Iref之间有相同的makeup style

Histogram loss.

对于original image x x x和reference image y y y,采用Histogram Matching方法生成一幅图像 H M ( x , y ) HM(x, y) HM(x,y),使得 H M ( x , y ) HM(x, y) HM(x,y)的颜色分布与 y y y相同,但仍保持了 x x x的content

然后对 x x x H M ( x , y ) HM(x,y) HM(x,y)求MSE loss

Q:original image x x x指的是生成图像吗?

Face parsing.

人脸上有3块区域对makeup style的贡献最大,分别是lipsticks、eye shadow、foundation,因此只对这3块区域计算Histogram loss

使用face parsing model来获取face guidance mask M = F P ( x ) M=FP(x) M=FP(x),最终得到binary的 M l i p , M e y e , M f a c e M_{lip}, M_{eye}, M_{face} Mlip,Meye,Mface,对于 M e y e M_{eye} Meye修正为 M s h a d o w M_{shadow} Mshadow,3个mask见Fig.2下方的图例

Makeup loss.

最终的makeup loss包含three local histogram losses acted on lips, eye shadows and face regions
L m a k e u p = λ l L l i p s + λ s L s h a d o w + λ f L f a c e ( 9 ) \mathcal{L}_{makeup}=\lambda_l\mathcal{L}_{lips}+\lambda_s\mathcal{L}_{shadow}+\lambda_f\mathcal{L}_{face} \qquad(9) Lmakeup=λlLlips+λsLshadow+λfLface(9)
每一项local histogram loss定义如下
L i t e m = ∥ I s r c B − H M ( I s r c B ∘ M i t e m 1 , I r e f ∘ M i t e m 2 ) ∥ 2 ( 10 ) \mathcal{L}_{item}=\left \| I_{src}^B-HM\left ( I_{src}^B\circ M_{item}^1, I_{ref}\circ M_{item}^2 \right ) \right \|_2 \qquad(10) Litem=IsrcBHM(IsrcBMitem1,IrefMitem2)2(10)
M 1 = F P ( I s r c B ) ( 11 ) M 2 = F P ( I r e f B ) ( 12 ) \begin{aligned} &M^1=FP\left ( I_{src}^B \right ) \qquad(11) \\ &M^2=FP\left ( I_{ref}^B \right ) \qquad(12) \\ \end{aligned} M1=FP(IsrcB)(11)M2=FP(IrefB)(12)
其中 ∘ \circ 表示点乘, i t e m ∈ { l i p s , s h a d o w , f a c e } item\in\left \{ lips, shadow, face \right \} item{lips,shadow,face}

注:从Fig.2来看,只对有妆的图像作用makeup loss

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值