论文笔记 AAAI 2021|Span-Based Event Coreference Resolution

125 篇文章 12 订阅
该研究提出了一种基于span的事件共指消解模型,结合跨任务一致性约束和实体共指信息提升性能。在AAAI2021会议上发表的论文中,作者介绍了Baseline、Pipeline和Joint三种模型,分别用于触发词检测和事件共指消解。实验结果显示,加入实体共指信息能有效改进结果,并通过MUC、B3、CEAFE和BLANC等指标进行了评估。
摘要由CSDN通过智能技术生成

1 简介

论文题目:Span-Based Event Coreference Resolution
论文来源:AAAI 2021
论文链接:https://www.aaai.org/AAAI21Papers/AAAI-9086.LJ.pdf

1.1 创新

  • 使用span-based模型完成事件共指消解任务,同时加入跨任务一致性约束和实体共指信息以提高性能。

2 背景知识

事件共指消解的监督模型包括pipeline和联合模型,使用的特征可以分为四类:词汇特征、语义特征、基于论元的特征、基于discourse的特征(如两个事件提及token、句子间的距离)。
触发词检测和事件共指任务广泛使用的一个约束是:两个共指事件提及必须有相同的事件子类型。

3 方法

提出的三种模型如下图(后两种模型利用了实体共指信息):

在这里插入图片描述

3.1 Baseline

首先抽取全部的长度为L的句内span。每个span对应一个候选触发词,然后同时学习触发词检测和事件共指消解任务。触发词检测任务的目标是为每个span分配一个子类型。
事件共指消解任务的目标是为span分配一个祖先(先前的span或者dummy)。
打分函数如下( ϵ \epsilon ϵ代表该span为dummy):
在这里插入图片描述
Baseline的模型结构如上图a,主要分为下面3个部分:

  • Span Representation Layer:使用SpanBERT-large对token和上下文进行编码,每个span表示为 g i = [ h s t a r t ( i ) ; h e n d ( i ) ; h h e a d ( i ) ; f i ] g_i=[h_{start(i)};h_{end(i)};h_{head(i)};f_i] gi=[hstart(i);hend(i);hhead(i);fi](分别是头token编码、尾token编码、基于注意力的头向量、span长度特征编码)。
    每个span的打分函数如下,仅取top N%的span进行下一步操作。
    在这里插入图片描述
  • Trigger Prediction Layer:对span进行触发词分类,公式如下:
    在这里插入图片描述- Coreference Prediction Layer:预测事件共指链接,同时使用antecedent pruning method,减少运行时间,打分函数如下(第三项为点乘操作(计算相似度),第四项为特征便编码):
    在这里插入图片描述
    Loss为两个任务的Loss,两个任务的Loss均遵循max-margin。是具体错误的函数。对于事件共指消解任务, y c l y^l_c ycl代表最高分的祖先。公式如下:

添加的一致性约束有下面两种(设置为软约束,将违反约束的次数加入到Loss中):

  • 两个span没有共同的事件子类型,它们不能是共指的。
  • 一个span的事件子类型为None,它的祖先一定是dummy。

3.2 Pipeline

如模型图中的b,为了利用实体共指的信息,添加约束为:如果事件的论元不是实体共指的,那么两个事件提及不是共指的(硬约束)。使用Stanford CoreNLP toolkit识别事件提及的论元(依赖路径不超过3)和分配角色(依赖路径的标签)。

3.3 Joint

如模型图中的c,与Pipeline不同的是使用一个span表示层、Loss为联合的。

4 实验

事件共指消解的评测指标为MUC, B 3 B^3 B3, C E A F e CEAF_e CEAFe, B L A N C BLANC BLANC(AVG-F为四种评测指标的平均值),实体共指的评测指标为MUC, B 3 B^3 B3, C E A F e CEAF_e CEAFe, C o N L L CoNLL CoNLL参考链接,实验结果如下图:
在这里插入图片描述

错误分析如下图,准确率错误主要为错误判断地将两个共享论元的非共指事件;召回率错误主要为名词事件提及(通常介绍事件的新信息)。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值