1 简介
论文题目:Span-Based Event Coreference Resolution
论文来源:AAAI 2021
论文链接:https://www.aaai.org/AAAI21Papers/AAAI-9086.LJ.pdf
1.1 创新
- 使用span-based模型完成事件共指消解任务,同时加入跨任务一致性约束和实体共指信息以提高性能。
2 背景知识
事件共指消解的监督模型包括pipeline和联合模型,使用的特征可以分为四类:词汇特征、语义特征、基于论元的特征、基于discourse的特征(如两个事件提及token、句子间的距离)。
触发词检测和事件共指任务广泛使用的一个约束是:两个共指事件提及必须有相同的事件子类型。
3 方法
提出的三种模型如下图(后两种模型利用了实体共指信息):
3.1 Baseline
首先抽取全部的长度为L的句内span。每个span对应一个候选触发词,然后同时学习触发词检测和事件共指消解任务。触发词检测任务的目标是为每个span分配一个子类型。
事件共指消解任务的目标是为span分配一个祖先(先前的span或者dummy)。
打分函数如下(
ϵ
\epsilon
ϵ代表该span为dummy):
Baseline的模型结构如上图a,主要分为下面3个部分:
- Span Representation Layer:使用SpanBERT-large对token和上下文进行编码,每个span表示为
g
i
=
[
h
s
t
a
r
t
(
i
)
;
h
e
n
d
(
i
)
;
h
h
e
a
d
(
i
)
;
f
i
]
g_i=[h_{start(i)};h_{end(i)};h_{head(i)};f_i]
gi=[hstart(i);hend(i);hhead(i);fi](分别是头token编码、尾token编码、基于注意力的头向量、span长度特征编码)。
每个span的打分函数如下,仅取top N%的span进行下一步操作。
- Trigger Prediction Layer:对span进行触发词分类,公式如下:
- Coreference Prediction Layer:预测事件共指链接,同时使用antecedent pruning method,减少运行时间,打分函数如下(第三项为点乘操作(计算相似度),第四项为特征便编码):
Loss为两个任务的Loss,两个任务的Loss均遵循max-margin。是具体错误的函数。对于事件共指消解任务, y c l y^l_c ycl代表最高分的祖先。公式如下:
|
|
|
添加的一致性约束有下面两种(设置为软约束,将违反约束的次数加入到Loss中):
- 两个span没有共同的事件子类型,它们不能是共指的。
- 一个span的事件子类型为None,它的祖先一定是dummy。
3.2 Pipeline
如模型图中的b,为了利用实体共指的信息,添加约束为:如果事件的论元不是实体共指的,那么两个事件提及不是共指的(硬约束)。使用Stanford CoreNLP toolkit识别事件提及的论元(依赖路径不超过3)和分配角色(依赖路径的标签)。
3.3 Joint
如模型图中的c,与Pipeline不同的是使用一个span表示层、Loss为联合的。
4 实验
事件共指消解的评测指标为MUC,
B
3
B^3
B3,
C
E
A
F
e
CEAF_e
CEAFe,
B
L
A
N
C
BLANC
BLANC(AVG-F为四种评测指标的平均值),实体共指的评测指标为MUC,
B
3
B^3
B3,
C
E
A
F
e
CEAF_e
CEAFe,
C
o
N
L
L
CoNLL
CoNLL,参考链接,实验结果如下图:
错误分析如下图,准确率错误主要为错误判断地将两个共享论元的非共指事件;召回率错误主要为名词事件提及(通常介绍事件的新信息)。