共指消解评价指标

本文详细介绍了共指消解任务的四个关键评价指标:MUC、B3、CEAF和BLANC,讨论了它们的计算方法和优缺点,为自然语言处理中的共指消解提供了评估标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

本篇博文主要介绍共指消解任务中常用的评价指标:MUC,B3,CEAF,以及BLANC。在实际应用中,通过采用上述评价指标的多种的平均值作为最终的评估指标。

二、MUC

MUC score计算了将预测的共指链映射到标注的共指链所需插入或者删除的最少的链接数量。其缺陷在于无法衡量系统预测单例实体(singleton entity)的性能。

三、B3

B3算法可以克服MUC的缺点,因为该算法主要是对每个mention来分别计算precision和recall,然后以所有mention的平均值作为最终的指标。

对于单个mention,计算方式如下所示:
在这里插入图片描述
其中,R代表算法预测的共指链,而K则代表数据集标注的共指链。

计算样例:
在这里插入图片描述
在这里插入图片描述

四、CEAF

CEAF是一种基于实体相似度的评估算法。对于实

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值