1 简介
论文题目:Bi-Directional Iterative Prompt-Tuning for Event Argument Extraction
论文来源:EMNLP 2022
组织机构:华中科技大学
论文链接:https://arxiv.org/pdf/2210.15843.pdf
代码链接:https://github.com/HustMinsLab/BIP
1.1 动机
- 现有的基于prompt-tuning的事件论元抽取方法存在挑战:未使用实体信息;人工构造的verbalizer不是一种好的方法;事件论元交互未被开发。
1.2 创新
- 提出一个双向交互的基于prompt的事件论元抽取方法,为了每个论元标签分配一个虚拟的标签(基于语义),同时设计了三种模板(hard、soft、hard-soft),在低资源和高资源情形下(ACE 2005)取得SOTA。
2 方法
任务定义:给定一个句子、触发词、事件类型和句子中的实体,得到实体对应的论元角色。
模型的整体框架如上图,包含前向prompt和后向promot,前向promot在模板中使用该实体前面的实体提及和类型(公式1),然后使用预训练模型编码(公式2),后向promot在模板中使用该实体后面的实体提及和类型(公式3),最后将同一个实体的两个置信分数分布融合(公式4),得到最终的结果
|
|
|
|
为了解决一个论元角色在不同事件类型中存在不同的定义,为一个论元角色分配多个语义verbalizer(如Entity角色可以被分为Elect:Entity和Meet:Entity,Place未进行分隔),使用一个虚拟的词表示每个论元角色([mask]预测该虚拟词的概率,即为该标签的概率),初始化为该论元角色的的语义解释的平均编码,公式如下:
对一个实体拥有多个提及,使用or连接,然后构造3种模板:Hard(人工使用自然语言连接已知的信息)、Soft(在全部已知的信息后面添加可学习的token)、Hard-Soft(使用可学习的token连接已知的信息)
训练时loss为交叉熵:
3 实验
实验数据集为ACE 2005,实验结果如下图:
消融实验:
低资源情况下的表现:
Case Study:
不同prompt的影响: