论文笔记 EMNLP 2022|Bi-Directional Iterative Prompt-Tuning for Event Argument Extraction

125 篇文章 12 订阅
这篇来自华中科技大学的EMNLP2022论文提出了Bi-Directional Iterative Prompt-Tuning方法,针对事件论元抽取的挑战,如未利用实体信息和verbalizer问题。通过创建虚拟标签和三种模板(硬模板、软模板、硬软混合),在低资源和高资源条件下在ACE2005数据集上实现SOTA性能。实验表明该方法有效,特别是在低资源场景下。
摘要由CSDN通过智能技术生成

1 简介

论文题目:Bi-Directional Iterative Prompt-Tuning for Event Argument Extraction
论文来源:EMNLP 2022
组织机构:华中科技大学
论文链接:https://arxiv.org/pdf/2210.15843.pdf
代码链接:https://github.com/HustMinsLab/BIP

1.1 动机

  • 现有的基于prompt-tuning的事件论元抽取方法存在挑战:未使用实体信息;人工构造的verbalizer不是一种好的方法;事件论元交互未被开发。
    在这里插入图片描述

1.2 创新

  • 提出一个双向交互的基于prompt的事件论元抽取方法,为了每个论元标签分配一个虚拟的标签(基于语义),同时设计了三种模板(hard、soft、hard-soft),在低资源和高资源情形下(ACE 2005)取得SOTA。

2 方法

任务定义:给定一个句子、触发词、事件类型和句子中的实体,得到实体对应的论元角色。
在这里插入图片描述
模型的整体框架如上图,包含前向prompt和后向promot,前向promot在模板中使用该实体前面的实体提及和类型(公式1),然后使用预训练模型编码(公式2),后向promot在模板中使用该实体后面的实体提及和类型(公式3),最后将同一个实体的两个置信分数分布融合(公式4),得到最终的结果

为了解决一个论元角色在不同事件类型中存在不同的定义,为一个论元角色分配多个语义verbalizer(如Entity角色可以被分为Elect:Entity和Meet:Entity,Place未进行分隔),使用一个虚拟的词表示每个论元角色([mask]预测该虚拟词的概率,即为该标签的概率),初始化为该论元角色的的语义解释的平均编码,公式如下:
在这里插入图片描述
对一个实体拥有多个提及,使用or连接,然后构造3种模板:Hard(人工使用自然语言连接已知的信息)、Soft(在全部已知的信息后面添加可学习的token)、Hard-Soft(使用可学习的token连接已知的信息)
在这里插入图片描述
训练时loss为交叉熵:
在这里插入图片描述

3 实验

实验数据集为ACE 2005,实验结果如下图:
在这里插入图片描述
消融实验:
在这里插入图片描述
低资源情况下的表现:
在这里插入图片描述
Case Study:
在这里插入图片描述
不同prompt的影响:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值