人工智能文本创作技术:进展与应用
在当今科技飞速发展的时代,人工智能在文本创作领域展现出了巨大的潜力和影响力。从自动生成新闻报道到创作复杂故事,各种先进的技术不断涌现,为我们的生活和工作带来了诸多便利和创新。
1. 自动新闻报道生成
如今,已经有许多人工智能程序能够自动撰写新闻文章。例如,彭博新闻社已经使用自动化的“半机械人”技术生成了其三分之一的内容。该程序接收公司的资产负债表数据,对其进行分析,并生成包含最相关事实和指标的新闻报道。由于读者会根据这些报道做出购买决策,因此发布速度至关重要。
美联社的“Wordsmith”程序则根据规则生成公司季度收益报告。新的方法将从文本关键词生成文本消息视为一个翻译问题,例如,Gehrmann 等人使用基于变压器的序列到序列模型来实现这一目标。
2. 长故事生成
使用神经语言模型生成较长的故事时,许多模型目前存在短时间后就失去连贯性的问题。为了解决这个问题,Fan 等人采用了一种两层处理方法。
上层通过“目标”来描述故事段落的主题,以表征故事的线索;底层则使用序列到序列模型,将这些目标作为输入来生成故事文本。他们从 Reddit 论坛收集了约 300,000 个带有相关目标的故事作为训练数据,这些故事平均包含 734 个单词和 28 个目标单词。
他们使用的序列到序列模型类似于变压器,每层包含多个注意力机制(多头注意力),并在线性变换中添加了一个门,类似于长短期记忆网络。该模型还使用了一种能够关注越来越远距离元素的注意力机制,从而在生成新单词时能够考虑到很久以前的内容。
为了更好地结合目标生成文本,Fan 等人首先训练了一个具有三个编码器
订阅专栏 解锁全文
837

被折叠的 条评论
为什么被折叠?



