摘要
本文给出 dropout 函数的定义, 并求解其在反向传播中的梯度
相关
配套代码, 请参考文章 :
Python和PyTorch对比实现dropout函数及反向传播
系列文章索引 :
https://blog.csdn.net/oBrightLamp/article/details/85067981
正文
1. dropout 的概念
深度神经网络结构的过拟合是指 : 在训练集上的正确率很高, 但在测试集上的准确率很低.
为了缓解网络过拟合的问题, 其中一种常见的办法是使用 dropout 函数.
dropout 是指在深度网络的训练中, 以一定的概率随机地 “临时丢弃” 一部分神经元节点. 具体来讲, dropout 作用于每份小批量训练数据, 由于其随机丢弃部分神经元的机制, 相当于每次迭代都在训练不同结构的神经网络.
– 摘抄自 <百面机器学习>
dropout 前网络结构示意 :
图片来源 : https://www.jianshu.com/p/2c6978b4bf74
dropout 后网络结构示意 :
图片来源 : https://www.jianshu.com/p/2c6978b4bf74
2. dropout 的作用
dropout 最直接的作用就是可以提升模型的泛化能力, 提高模型的健壮性, 提高通用性.
如何理解 ?
假设某公司存在一个职能稳定, 合理分工团队.
因为某些不可避免的原因, 该团队的成员每天都有 50% 概率不能参与工作.
为了完成任务, 需要其他同事加班完成缺席员工任务.
一段时间后, 该团队的成员普遍学会了其他同事的相关工作技能.
于是, 该团队拥有了更好的泛化能力.
3. 训练过程中的 dropout
为了定义 dropout, 我们需要一个随机数生成函数 rand(), 每一次调用都会重新生成一个0~1之间的小数 :
0 ⩽ r a n d ( ) < 1    0\leqslant rand() < 1 \;\\ 0⩽rand()<1
假设每一次 dropout 都以 p 的概率随机丢弃一个节点 :
0 ⩽ p < 1 0\leqslant p < 1 0⩽p<1
则 dropout 函数的定义为 :
r = r a n d ( )    d r o p o u t ( x ) = { 0 , r < p x / ( 1 − p ) , r ⩾ p r = rand()\\ \;\\ dropout(x) = \left\{ \begin{array}{rr} 0, & r < p\\ x / (1 - p), & r \geqslant p \end{array} \right. r=rand()dropout(x)={
0,x/(1−p),r<pr⩾p
将通过的信号被放大 1 / ( 1 − p ) 1/(1 - p) 1/(1−p) 倍, 保证总体信号强度不变 (加班).
dropout函数是逐个元素处理的, 并不需要写成向量的形式.
但为了方便编程实现, 这里将其进行改编成向量的形式.
考虑一个输入向量 x, 同时定义一个随机掩码函数和一个随机掩码向量 m :
x = ( x 1 , x 2 , x 3 , ⋯   , x k )    r i = r a n d ( )    r a n d o m M a s k ( x i ) = { 0 , r i < p 1 / ( 1 − p ) , r i ⩾ p    m i = r a n d o m M a s k ( x i ) x = (x_1,x_2,x_3,\cdots,x_k)\\ \;\\ r_i