上一篇我们说了,主数据是企业跨系统、跨部门共享使用的基础数据,是业务系统之间沟通用的“通用名册”,作为所有数据标准的统一入口,比如客户信息、供应商资料、组织架构、物料清单……
那么问题来了,企业要怎么管理这些主数据?靠 Excel?靠数据库?靠人管? 显然不现实。这就引出了我们今天要聊的重点:
主数据管理是什么?它是如何把“黄金数据”管住、管好、用起来的?
一、什么是主数据管理
主数据管理(MDM, Master Data Management)
是一套围绕主数据进行的标准制定、建模管理、质量管控、权限配置和全生命周期运维的全过程,是集方法、标准、流程、制度、技术和工具为一体的解决方案。
主数据管理五要素
-
方法是指主数据梳理、识别、定义、管理、清洗、集成和共享所需要的一系列咨询和管理方法。
-
标准涵盖了主数据的分类、编码、建模、清洗、集成、管理、运营等的相关标准和规范。
-
流程是指规范主数据生产、管理和使用的相关流程,例如主数据新增流程、主数据变更流程、主数据冻结流程等。
-
制度确保主数据的一致性、正确性、完整性,规范主数据的管理、维护、运营的相关管理办法、规定和考核手段。
-
技术和工具是实现主数据管理和集成所涉及的技术平台与工具,如MDM系统、ESB、ETL等。
主数据管理的终极目标是打破孤岛,提升数据质量;统一认知,提升业务效率;集中管控,提升管理效能;数据驱动,提升决策水平。
二、主数据管理面临的挑战
在数字化转型的过程中,企业在实施主数据管理时常常遇到以下挑战:
1、数据孤岛问题
由于各业务系统(如ERP、CRM、SCM等)独立建设,导致客户、供应商、产品等核心数据分散存储,格式和定义不一致,阻碍了数据的共享和整合。
2、标准规范不统一
不同系统间编码规则不一致,属性定义各异,数据流向复杂,导致数据无法及时共享和集成,影响业务统计分析与决策。
3、数据质量问题
确保主数据的准确性、完整性、一致性和及时性是主数据管理的重要挑战。数据质量差可能导致业务流程和交易失败,影响企业决策。
4、跨部门协作障碍
主数据管理涉及多个部门,但部门间往往存在利益分歧与权责模糊,缺乏统一的治理框架,导致主数据整合困难。
5、维护机制缺失
业务应用系统各自维护,系统间数据存在不一致、不完整等问题,影响业务统计分析与决策。
6、数据共享困难
缺少统一管理的主数据,无法实现统一的数据分发与共享,数据维护工作量大,耗时长,阻碍企业提高整体的战略协同力。
面对上述挑战,企业需要制定全面的主数据管理策略,建立统一的数据标准和规范,强化跨部门协作,确保数据质量和安全,才能充分发挥主数据的价值,支撑企业的数字化转型。
以 FineDataLink(FDL)为代表的数据集成与治理平台,正是当前企业推进主数据管理的有效抓手,FDL 支持对异构系统的多源数据进行采集与格式归一,提供数据开发、数据管道、数据服务等功能,满足用户对数据进行同步、处理、清洗等需求,可有效解决企业内部“数据孤岛”和“标准不统一”的难题 。
三、主数据管理方法
主数据管理并非一蹴而就,它涉及企业组织、流程、制度、系统等多方面的协同配合,为有效推动主数据落地,数据管理项目的建设可参考“四阶段方法论”,分阶段、有节奏地完成从现状评估到平台运行的全过程建设:
摸家底——建体系——接数据——抓运营
这四个阶段,既是主数据治理的路径指引,也是项目成功的关键抓手。
阶段一、摸家底
所谓“摸家底”,就是系统性地梳理企业现有的数据资源、业务需求和信息系统现状,明确主数据范围、角色和现状问题。主要包括:
企业战略理解:
通过访谈与战略分析,明确主数据治理的业务定位和价值期望,确保获得管理层支持;
业务需求调研:
调研业务部门的数据使用场景与痛点,识别主数据相关的关键业务实体;
信息系统梳理:
摸排企业已有系统、数据结构、系统分布、数据冗余与集成情况,为后续集成设计提供依据;
主数据识别与分类:
结合主数据六特征(高价值、高共享、相对稳定、唯一性等)进行识别,同时借助“共享度-业务价值矩阵”明确主数据管理范围;
识别数据生产者与消费者:
形成U/C矩阵(创建者/使用者),厘清数据流转路径;
开展成熟度评估:
通过数据管理能力评估模型,识别组织在标准规范、管理制度、数据质量等方面的现状与差距。
阶段二:建体系
在明确主数据范围后,应同步启动治理体系建设,从组织、标准、流程、平台、安全等维度搭建支撑框架:
组织体系建设:
组建由高层主导的数据治理委员会,建立数据治理办公室与主数据管理小组,明确管理职责与分工;
标准体系建设:
制定主数据分类、命名、编码、结构、关系等核心标准,形成标准手册,作为数据管理的执行依据;
制度与流程体系:
明确主数据的新增、修改、审批、归档、发布等操作流程,设置各流程节点的责任角色与权限机制;
技术体系搭建:
建设具备建模、清洗、集成、发布等能力的主数据管理平台,配置ETL、接口、中间件等集成能力;
安全体系部署:
制定数据访问控制策略,配置权限分级、接口加密、数据脱敏、安全审计等能力,保障主数据全生命周期安全。
FineDataLink 支持用户自定义字段类型映射规则,并可配置生效的数据连接,允许在系统中灵活配置主数据模型,以适应不同的数据源和目标系统,通过ETL计算引擎,确保数据治理规则的同步和执行。
阶段三:接数据
主数据平台搭建完成后,需将企业内现有主数据进行清洗、整合、接入,以实现标准化、规范化的数据治理。该阶段的工作重点包括:
主数据接入:
通过ETL、文件传输、接口推送、消息中间件等方式,将主数据从各系统接入平台;
主数据清洗:
围绕数据规范性、唯一性、完整性等指标,执行去重、分类、缺失值填补、字段标准化等清洗操作,形成符合标准的数据集;
数据处理方式:
采用人工+工具双模式,结合主数据模板、质量规则与清洗流程,提升处理效率;
主数据分发:
建立主数据与业务系统间的发布机制,新系统强制接入主数据平台,遗留系统通过接口改造或映射对接,确保主数据“一数通用、一源共享”。
阶段四:抓运营
主数据平台上线只是开始,后续运营管理能力的持续建设,才是主数据治理成败的关键。该阶段应重点关注以下方面:
日常数据管理:
包括主数据的新增、变更、冻结、归档、查询与分发等操作流程,确保数据生命周期闭环可控;
主数据质量管理:
建立质量规则、执行稽核任务、生成质量报告,结合整改机制,推动数据质量持续改进;
主数据推广:
通过组织横向推广(更多单位/系统接入)与数据纵深推广(逐步扩展主数据域),扩大治理覆盖面;
培训与制度宣贯:
强化业务与技术团队对主数据的理解与协同,提升平台使用率与规则执行力;
价值变现与评估:
通过量化运营成本节省、数据支撑效率提升、分析应用价值实现等方式,体现主数据治理的业务价值。
主数据治理不是技术项目,而是涉及企业全域的管理工程。通过“摸家底—建体系—接数据—抓运营”四阶段推进路径,企业可逐步实现主数据从混乱无序到标准统一、从分散管理到集中共享、从短期建设到长期运营的全流程治理闭环。
FineDataLink是一款集实时数据同步、ELT/ETL数据处理、离线/实时数据开发、数据服务和系统管理于一体的数据集成工具,可在Windows或Linux环境上单机/集群部署,全程基于B/S浏览器端进行任务开发和任务运维,更多精彩功能,邀您体验,希望能帮您解决企业中数据从任意终端到任意终端的处理和传输问题,让流动的数据更有价值!
了解更多数据仓库与数据集成相关干货内容请关注>>>FineDataLink
免费试用、获取更多信息,点击了解更多>>>体验FDL功能