如何在长短期记忆(LSTM)网络中利用TimeDistributed层---python语言

如何在长短期记忆(LSTM)网络中利用TimeDistributed层—python语言

这是给Python部落翻译的文章,请查看原文

长短期记忆(LSTM)网络是一种流行并且性能很好的循环神经网络(RNN)。

像在python深度学习库Keras中,这些网络有明确的定义和易用的接口,但是它们一般都是很难配置的,可以解决任意序列的预测问题。

在库Keras中出现这个困难的原因是采用了TimeDistributed包装层,并且一些LSTM层需要返回的是序列而不是单独一个值。

在这个教程中,你会学习到配置LSTM网络的不同方式,来解决序列预测问题;也会了解到TimeDistributed层的作用,学会怎样利用它。

学习这个教程,你会了解到:

  • 怎样设计一个解决序列预测问题的一对一LSTM网络;
  • 怎样设计一个解决序列预测问题的多对一LSTM网络,不采用TimeDistributed层;
  • 怎样设计一个解决序列预测问题的多对一LSTM网络,采用TimeDistributed层;

    现在开始

这里写图片描述

教程目录

此教程分为5个部分:

  1. TimeDistributed层
  2. 序列学习问题
  3. 用于解决序列预测问题的一对一LSTM网络
  4. 用于解决序列预测问题的多对一LSTM网络(无TimeDistributed层)
  5. 用于解决序列预测问题的多对一LSTM网络(TimeDistributed层)

环境

此教程需要Python2或者Python3开发环境,依赖SciPyNumPyPandas库。

此教程也需要scikit-learn库和安装Keras v2.0+,以TheanoTensorFLow为后端均可。

配置Python环境请参考这里:

How to Setup a Python Environment for Machine Learning and Deep Learning with Anaconda

TimeDistributed层

LSTMs性能很好,但是运用较难,并且配置也很难,特别是对于新手。

另外一个困难之处就是被描述为层包装的TimeDistributed层(以前是TimeDistributedDense层):

这个包装可以将层应用到输入的每一个时间片上

在LSTMs中,怎样、什么时候应该运用这个包装呢?

当你在Keras GithubStackOverflow上搜索关于包装层讨论时,你会发现越来越迷惑、复杂难解。

例如,针对问题When and How to use TimeDistributedDense,fchollet(Keras的作者)解释说:

TimeDistributedDense将同样的密集(全连接)操作应用到3D张量的每一个时间间隔上。

当你已经理解TimeDistributed是干什么的,什么时候运用它时,这样的回答是有意义的,但是对于新手来说是没有任何帮助的。

此教程的目的就是解决在LSTMs中运用TimeDistributed层出现的疑惑,并且利用可运行的例子来帮助读者理解。

序列学习问题

下面利用一个简单的序列学习问题来阐述TimeDistributed层。

假设输入序列为[0.0,0.2,0.4,0.6,0.8],每次输入一个,每次按顺序输出一个结果。可以把它看作学习一个简单的重复程序,当输入为0.0时,希望输出结果为0.0,重复序列中的每一个元素。

生成此序列的代码如下:

from numpy import array
length = 5
seq = array([i/float(length) for i in range(length)])
print(seq)

运行此代码将会得到如下序列:

[ 0.   0.2  0.4  0.6  0.8]

这个例子是可配置的,读者自己可以改变序列的长短,欢迎在评论区分享你的结果。

用于解决序列预测问题的一对一LSTM网络

在叙述之前,首先说明这个序列学习问题是可分段学习的。也即是,把序列中的每一个元素,转化成一个输入-输出一一对应的数据集。假设输入0那么网络应该输出0,当输入为0.2时,网络应该输出0.2,其它一样。这是此问题最简单的模型,把输入序列分割成输入-输出一一对应的结果,对输入序列在网络外部每次给出一个预测结果。

输入-输出一一对应结果如下:

X,  y
0.0,    0.0
0.2,    0.2
0.4,    0.4
0.6,    0.6
0.8,    0.8

LSTMs网络的输入必须是三维的,我们可以把一个二维序列映射成有5个样本、时间步长为1、1个特征的三维序列,并定义输出为5个采样值、1个特征。

x = seq.reshape(5, 1, 1)
y = seq.reshape(5, 1)

定义一个每次有1个输入的网络模型,第一个隐藏层是有5个神经元的LSTMs,输出层是只有一个输出的全连接层,模型采用有效的ADAM优化算法,均方差误差作为损失函数。

为了避免必须采用手动方式来使得LSTM有输出和复位其状态,即使这在更新权重时很容易做到,但是每轮训练时还是把batch大小设置为样本的大小。

全部的代码如下:

from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
# prepare sequence
length = 5
seq = array([i/float(length) for i in range(length)])
X = seq.reshape(len(seq), 1, 1)
y = seq.reshape(len(seq), 1)
# define LSTM configuration
n_neurons = length
n_batch = length
n_epoch = 1000
# create LSTM
model = Sequential()
model.add(LSTM(n_neurons, input_shape=(1, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
# train LSTM
model.fit(X, y, epochs=n_epoch, batch_size=n_batch, verbose=2)
# evaluate
result = model.predict(X, batch_size=n_batch, verbose=0)
for value in result:
    print('%.1f' % value)

运行此代码可打印网络的结构,LSTM层有140个参数,这个可以参考如下计算方式得到:

n = 4 * ((inputs + 1) * outputs + outputs^2)
n = 4 * ((1 + 1) * 5 + 5^2)
n = 4 * 35
n = 140

全连接层只有6个参数,参数个数计算方式如下:

n = inputs * outputs + outputs
n = 5 * 1 + 1
n = 6

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
lstm_1 (LSTM)                (None, 1, 5)              140
_________________________________________________________________
dense_1 (Dense)              (None, 1, 1)              6
=================================================================
Total params: 146.0
Trainable params: 146
Non-trainable params: 0.0
_________________________________________________________________

网络可以正确学习这个预测问题:

0.0
0.2
0.4
0.6
0.8

用于解决序列预测问题的多对一LSTM网络(无TimeDistributed层)

在这一部分,我们构建一个没有TimeDistributed层的LSTM网络,并且立即输出结果序列。LSTMs网络的输入必须是三维的,我们可以把一个二维序列映射成有1个样本、步长为5、1个特征的三维序列,并定义输出为1个采样值、5个特征。

X = seq.reshape(1, 5, 1)
y = seq.reshape(1, 5)

马上你就可以看到在没有TimeDistributed包装的情况下,问题的定义需要稍加调整以满足序列预测问题的网络模型,具体来说,就是输出一个向量而不是每次一步一步建立一个输出序列,这个差别看起来非常小,但这是理解TimeDistributed包装的关键所在。

下面我们定义一个有1个输入,时间步长为5的模型。第一个隐藏层是有5个神经元的LSTM,输出层为全连接层。

# create LSTM
model = Sequential()
model.add(LSTM(5, input_shape=(5, 1)))
model.add(Dense(length))
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())

接下来,训练此模型500轮,在训练数据集中仅有1个数据,因此batch大小为1.

# train LSTM
model.fit(X, y, epochs=500, batch_size=1, verbose=2)

把上述代码整合在一起,完整的代码如下:

from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
# prepare sequence
length = 5
seq = array([i/float(length) for i in range(length)])
X = seq.reshape(1, length, 1)
y = seq.reshape(1, length)
# define LSTM configuration
n_neurons = length
n_batch = 1
n_epoch = 500
# create LSTM
model = Sequential()
model.add(LSTM(n_neurons, input_shape=(length, 1)))
model.add(Dense(length))
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
# train LSTM
model.fit(X, y, epochs=n_epoch, batch_size=n_batch, verbose=2)
# evaluate
result = model.predict(X, batch_size=n_batch, verbose=0)
for value in result[0,:]:
    print('%.1f' % value)

运行代码可以打印网络的结构,可以看到这个LSTM模型同前面一样也有140个参数。LSTM单元被破坏并且每一个单元输出一个值,产生有5个元素的向量,作为全连接层的输入。时间纬度或者说序列信息被丢弃,转化为一个具有5个元素的向量。

全连接输出层有5个输入,期望产生5个输出,可以根据下式算出需要30个权重系数:

n = inputs * outputs + outputs
n = 5 * 5 + 5
n = 30

网络的概要信息如下:

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
lstm_1 (LSTM)                (None, 5)                 140
_________________________________________________________________
dense_1 (Dense)              (None, 5)                 30
=================================================================
Total params: 170.0
Trainable params: 170
Non-trainable params: 0.0
_________________________________________________________________

模型训练过程中会打印损失函数信息,最后输出序列预测的结果。该序列会被正确地以一个单一的块再现,而不是序列中每个元素逐步再现。我们可以用一层密集连接层作为第一个隐藏层,而不是采用LSTMs,这个原因在于后者的用法没有完全发挥序列学习处理的能力。

0.0
0.2
0.4
0.6
0.8

用于解决序列预测问题的多对多LSTM网络(TimeDistributed层)

这部分利用TimeDistributed层来处理LSTM隐藏层的输出,在运用TimeDistributed包装层的时候需要记住两个关键点:

  • 输入必须(至少)是三维的。这就意味着需要在TimeDistributed包装密集层前配置最后一个LSTM层以便返回序列(例如将“return_sequences”参数设置为“True”)
  • 输出将也是三维的。如果TimeDistributed包装密集层是输出层,并且是用于预测序列,那么就得将y数组的大小调整成三维的向量。

定义一个有1个样本,时间步长为5,1个特征的输出,形如输入序列,如下:

 y = seq.reshape(1, length, 1)

通过将“return_sequences”参数设置为“True”来定义LSTM隐藏层返回序列而不是单独的一个值。

model.add(LSTM(n_neurons, input_shape=(length, 1), return_sequences=True))

这样会使得每一恶搞LSTM单元返回一个具有5个输出元素的序列,每次产生一个对应于输入数据的输出,而不是像前面例子中的输出单个值。当然也可以利用TimeDistributed包装全连接层的输出,以得到单个的输出。

model.add(TimeDistributed(Dense(1)))

输出层的单个输出值是很重要的,它表示对于输入序列,我们希望每一次只输出一个值,这样一来可以一次处理时间步长为5的输入序列。TimeDistributed的技巧在于,每次都是将同样的密集层应用到LSTMs的输出,这样输出层仅需要一个连接到每一个LSTM单元(加上一个偏置)。因此,为了应对较小的网络容量,需要增加训练的轮数。可以从500增加到1000以匹配第一个一对一的例子。

把代码整合在一起,完整的代码如下:

from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import TimeDistributed
from keras.layers import LSTM
# prepare sequence
length = 5
seq = array([i/float(length) for i in range(length)])
X = seq.reshape(1, length, 1)
y = seq.reshape(1, length, 1)
# define LSTM configuration
n_neurons = length
n_batch = 1
n_epoch = 1000
# create LSTM
model = Sequential()
model.add(LSTM(n_neurons, input_shape=(length, 1), return_sequences=True))
model.add(TimeDistributed(Dense(1)))
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
# train LSTM
model.fit(X, y, epochs=n_epoch, batch_size=n_batch, verbose=2)
# evaluate
result = model.predict(X, batch_size=n_batch, verbose=0)
for value in result[0,:,0]:
    print('%.1f' % value)

运行这个例子,得到此网络的结构信息。同前面的例子,LSTM隐藏层依然有140个参数。完全连接输出层正好符合一对一的例子,对于每一个LSTM单元就有一个有权重的神经元,另外一个用于偏置输入。

这个有两个地方需要注意:

  • 可以按照定义的方式对问题进行构建和学习,这是针对一对一的模型,但是每次需独立处理内部过程;
  • 通过减少权重的数量来简化网络模型,使得一次只处理一个时间步长。

每次将更简单的完全连接层应用到上一层的输出序列上以得到输出序列。

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
lstm_1 (LSTM)                (None, 5, 5)              140
_________________________________________________________________
time_distributed_1 (TimeDist (None, 5, 1)              6
=================================================================
Total params: 146.0
Trainable params: 146
Non-trainable params: 0.0
_________________________________________________________________

网络的输出结果如下:

0.0
0.2
0.4
0.6
0.8

在第一个例子中,可以把利用时间步长进行问题建模和TimeDistributed层看作是一个更加紧凑的实现一对一网络模型的方式,这样可以在空间或者时间上提升会非常明显。

深入理解

下面是一些关于TimeDistributed层的资源或者讨论。

总结

此教程你可以学到如何构建用于序列预测的LSTM网络模型,并且帮助理解TimeDistributed层的作用。

具体地,有以下内容:

  • 如何构建一对一LSTM序列预测模型
  • 如何构建多对一LSTM序列预测模型(无TimeDistributed层)
  • 如何构建多对多LSTM序列预测模型(采用TimeDistributed层)

如有问题,请在评论区评论,我会及时回答。

  • 12
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
WOA-BiLSTM(Whale Optimization Algorithm-Bidirectional Long Short-Term Memory)是一种基于鲸鱼优化算法和双向长短期记忆神经网络的优化方法,用于解决机器学习的问题。 首先,让我们了解一下双向长短期记忆神经网络(BiLSTM)。LSTM是一种特殊的循环神经网络(RNN),它通过引入门控机制来解决传统RNN的梯度消失和梯度爆炸问题。BiLSTM则是在LSTM的基础上增加了一个反向的LSTM,可以同时考虑过去和未来的上下文信息。 而WOA(Whale Optimization Algorithm)是一种基于鲸鱼行为的优化算法,模拟了鲸鱼群体的搜索和迁徙行为。它通过模拟鲸鱼的搜索过程来寻找最优解。 将WOA和BiLSTM结合起来,就得到了WOA-BiLSTM算法。该算法通过使用WOA算法来优化BiLSTM网络的参数,以提高其性能和泛化能力。具体而言,WOA-BiLSTM算法使用WOA算法来搜索BiLSTM网络的权重和偏置,并通过迭代更新来逐步优化网络。 在Python实现WOA-BiLSTM算法,你可以使用深度学习框架如TensorFlow或PyTorch来构建和训练BiLSTM网络,并结合WOA算法来优化网络参数。具体实现步骤如下: 1. 定义BiLSTM网络结构:使用TensorFlow或PyTorch构建一个包含双向LSTM神经网络模型。 2. 定义损失函数:选择适当的损失函数来度量模型的性能,例如均方误差(MSE)或交叉熵损失。 3. 定义WOA算法:实现WOA算法的搜索和迁徙过程,包括初始化鲸鱼位置、计算适应度函数、更新鲸鱼位置等步骤。 4. 结合WOA和BiLSTM:在每次迭代,使用WOA算法来搜索并更新BiLSTM网络的权重和偏置。 5. 训练和优化:使用训练数据集对WOA-BiLSTM模型进行训练,并根据验证集的性能来调整模型参数。 6. 测试和评估:使用测试数据集对训练好的WOA-BiLSTM模型进行测试,并评估其性能指标,如准确率、精确率、召回率等。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值