复制-粘贴大法(Copy-Paste):简单而有效的数据增强

论文标题:Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation

论文地址:https://arxiv.org/pdf/2012.07177.pdf

非官方代码:https://github.com/qq995431104/Copy-Paste-for-Semantic-Segmentation


目录

1、摘要

2、简介

 3、本文的方法

混合粘贴

大尺度抖动

4、实验结果

4.1 模型初始化、抖动尺度方面

4.2 和mixup的对比

4.3 在不同backbone和输入尺寸上的对比

4.4  结合自训练和复制粘贴

 4.5 在coco的SOTA模型上的实验

4.6 在 PASCAL VOC目标检测和语义分割上的实验

 4.7 LVIS数据集上的实验

 5 总结


1、摘要

建立有效的实例分割模型,并能处理罕见的对象类别是计算机视觉中一个重要的挑战。数据增强是应对这一挑战的一个有前途的方向。在这里,我们在实例分割方向对复制-粘贴增强进行了系统的研究,如随机地将对象粘贴到一张图像上。先前对复制粘贴的研究依赖于对周围视觉环境的建模来。然而,我们发现随机粘贴对象的简单机制已经足够好了,并且可以在强baseline之上提供稳定的增益。此外,我们通过半监督方法证明复制-粘贴带来的性能是可叠加的,该方法通过伪标签利用额外的数据(如自训练)。在COCO实例分割上,我们实现了49.1 mask AP和57.3 box AP,相比之前的sota模型,有+0.6 mask AP和+1.5 box AP的改进。我们进一步证明了复制-粘贴可以显著改善LVIS benchmark。我们的baseline模型在罕见类别上比LVIS 2020挑战赛优胜条目高出+3.6 mask AP。

2、简介

通过粘贴不同规模的不同对象到新的背景图像,复制-粘贴有潜力免费获取丰富的和新颖的训练数据。这一点和其他数据增强类似,但是本文的复制粘贴主要用于实例分割,其粘贴的对象是从一张图中抠出mask部分对应的实例,然后随机粘贴到另一张图像。所复制粘贴的对象,是精确到像素级的,这也是其与Cut-mix方法的区别。

在coco基准集上测试了复制粘贴大法的有效性,如下图所示,通过对比标准尺度抖动、大尺度抖动、大尺度抖动+复制粘贴,可以看出增加了复制粘贴大法后,可以明显进一步提高性能。

 3、本文的方法

方法很简单,主要思想是:混合粘贴+大尺度抖动。

混合粘贴

是指利用公式I_{1} \times \alpha+I_{2} \times(1-\alpha)将两幅图像的内容混合在一起;公式中,I_1是粘贴对象所在的图像,I_2是主图像,\alpha是mask掩模;公式的意思其实很淳朴,就是将I_1中mask部分的像素抠出来,然后粘贴到I_2中,当然,这个过程有很大的随机性:(1)选择用于粘贴的源图和目标图的随机性;(2)选择粘贴源图中哪些对象的随机性;(3)选择粘贴到目标图像的哪些位置的随机性。

混合粘贴的效果如下图:

大尺度抖动

大尺度抖动(Large Scale Jittering,LSJ)是相较于标准尺度抖动(standard scale jittering,SSJ)而言更为大胆的一种尺度抖动方法。在SSJ中,尺度变化的范围是0.8~1.25,而在LSJ中,尺度变化范围是0.1~2.0;如此大范围的抖动,会产生对比强烈的抖动效果。此外,无论LSJ还是SSJ,都使用了随机水平翻转。LSJ的最终效果如下图:

此外,结合自训练,此方法同样能够带来可叠加的收益 。

4、实验结果

4.1 模型初始化、抖动尺度方面

左:使用了预训练/非预训练模型初始化的backbone在使用/不使用复制粘贴情况的下的对比;右:不同抖动尺度下,用和不用复制粘贴的对比。可以看出,无论什么情况,使用了复制粘贴都能带来稳定的收益。

4.2 和mixup的对比

可以看出,在SSJ的实验(左)中,mixup和Copy-Past都能带来收益,但Copy-Past带来的收益更大;但在LSJ的实验(右)中,mixpu带来的收益就几乎没有了,猜测原因应该是LSJ已经足够优秀了,常规的增强方法并不能带来超出LSJ的收益,而Copy-Past就可以。

4.3 在不同backbone和输入尺寸上的对比

从下表可以看出,使用了复制粘贴大法,在所有模型、输入尺度上都能带来稳定收益。

4.4  结合自训练和复制粘贴

自训练利用未标记数据,可带来1.5 Box AP,复制粘贴同样也能带来类似的收益;将两者结合起来用,可以带来“1+1=2”的线性叠加的收益!(能够使收益线性叠加,是真的强!)

将coco中的对象粘贴到coco和粘贴到伪标签数据的对比,可以看出,无论粘贴到哪里都能带来收益,但两者都粘贴则能带来“1+1>2”的收益:

 4.5 在coco的SOTA模型上的实验

相比SOTA模型,添加了复制粘贴和自训练的方法后,带来的收益同样可观:

4.6 在 PASCAL VOC目标检测和语义分割上的实验

实验表明,复制粘贴大法对目标检测和实例分割同样有效:

 4.7 LVIS数据集上的实验

 5 总结

数据增强是许多视觉系统的核心。本文对复制-粘贴数据增强方法进行了严格的研究,发现该方法是非常有效和健壮的。在强大的baseline基础上,无论是在COCO和LVIS实例分割基准集,复制-粘贴在多个实验设置中都能表现良好,并提供了显著的改善。

复制-粘贴增强策略简单,易于插入到任何实例分割代码库中,并且不会增加训练成本或推理时间。我们还展示了复制-粘贴对于在训练过程中合并额外的未标记图像是有用的,并且能够与自训练技术的带来的收益相加。我们希望它足够令人信服,以使复制-粘贴增强可以作为训练实例分割模型时的标准数据增强手段。

  • 31
    点赞
  • 132
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 60
    评论
### 回答1: yolov5数据增强copy-paste是一种数据增强方法,它可以通过将图像中的某些区域复制粘贴到其他位置来生成新的训练数据。这种方法可以增加数据集的多样性,提高模型的鲁棒性和泛化能力。在yolov5中,copy-paste数据增强可以通过使用imgaug库来实现。 ### 回答2: YoloV5是一个非常流行的目标检测算法,而数据增强技术则是提高模型精度的重要手段。其中一种常见的数据增强方法是copy-paste,即将图片中的某个区域复制粘贴到其他区域,从而生成更多的训练数据。 具体来说,copy-paste数据增强可以通过以下步骤实现: 1. 选择目标区域。通常情况下,我们会选择图片中包含目标物体的区域,以确保生成的新图片仍然包含该物体。 2. 复制目标区域。通过将目标区域从原图中复制出来,可以获得一个新的带有目标物体的小图像。 3. 选择粘贴位置。选择另一个区域作为粘贴位置,这里通常会选择一些背景区域或者其他未包含目标的区域。 4. 进行粘贴。将复制的区域粘贴到目标位置,就可以得到一个新的包含目标物体的图像。 5. 调整位置和大小。由于复制区域和粘贴位置的大小和形状可能不同,因此需要根据需要进行微调,以确保新图片的质量。 通过copy-paste数据增强,可以生成更多的训练数据,从而提高模型的泛化能力和鲁棒性。此外,还可以通过扭曲、旋转、颜色变换等技术进一步增强数据,以获得更好的训练效果。 ### 回答3: 在深度学习中,数据增强是提高模型性能的一种方式。YOLOv5是一种基于深度学习的目标检测算法,而Copy-Paste是YOLOv5数据增强的一种方式。以下是我对该数据增强方式的理解和解释。 Copy-Paste是指将一个物体从一张图像复制到另一张图像中,然后将其放置在随机位置。该方法通过增加训练样本数量,增强了训练集的多样性,能提高模型的鲁棒性,从而提高模型的准确性和泛化能力。 Copy-Paste在YOLOv5中的具体实现步骤如下: 1. 随机从原始图像中选定一个物体作为复制对象。 2. 随机选择另一张与原始图像大小相同的图像,将选定的物体复制到该图像中。 3. 随机调整复制物体的大小和旋转角度,使其适应新的图像环境。 4. 随机选择新图像的位置,并将复制的物体粘贴到该位置上。 5. 计算图像中所有物体的坐标和类别,并将其转换为相对于图像大小的百分比。 使用Copy-Paste数据增强技术可以大大改善模型的性能,增加数据多样性以达到模型推广到更多的应用的目的,可以有效解决数据少的情况下模型过拟合问题。当然这个数据增强方法也有一定的缺陷,因为复制的物体可能不匹配目标图像的背景,会导致背景不连续甚至不真实。需要进行质量评估。然而,该方法可以通过调整参数来改进,比如增加复制物体的数量和增加旋转和平移的方式来进一步提高模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 60
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶舟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值