使用Ollama+Open WebUI在windows电脑本地运行大模型

安装ollama

打开ollama官网Ollama下载windows版本的ollama正常根据提示安装就行

如何更改ollama模型下载路径

如果想要将ollama下载的大模型放到其他地方的话就要在安装之前先添加环境变量再进行安装

在系统环境变量中新建ollama环境变量:

变量名不可更改,必须是OLLAMA_MODELS,变量值是你实际放置大模型的路径

下载适合自己的模型

到ollama官网复制模型下载口令到终端回车就行了,目前中文最好的模型是qwen2,自己电脑配置好一点就可以下载大一点的模型,ollama模型下载的默认路径是:

C:\Users\用户名\.ollama\models


安装Docker

这个方案还需要安装一个Docker容器:

https://www.docker.com/


这可能要”梯子“才能访问下载,或者网上找一下快速获取方法。

Docker安装完成后在系统变量中添加Docker的环境变量:

C:\Program Files\Docker\Docker\resources\bin

下载Open-WebUI

Open-WebUI安装方法请参考文档🏡 Home | Open WebUI或者Docker安装完成后打开电脑终端(cmd)输入以下指令:


docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main


输入以上指令后会等待比较久,等待结束后会自动打开一个本地连接
如果没有自动打开,就把Docker打开,点击3000:8080就会自动跳转到WebUI界面


点击后就来到了我们比较熟悉的界面了我们第一个注册的账号默认就是管理员账号,界面图如下:

注册登录

随便填个邮箱就行了如下图:


下面就是模型选择和中文设置了

### 部署DeepSeek本地模型的教程 #### 使用Docker、OllamaOpen-WebUI在Linux上的部署流程 为了成功部署DeepSeek本地模型,需先安装并配置好Docker环境。对于Linux系统而言,推荐按照官方文档中的指导完成安装过程[^1]。 一旦Docker准备就绪,下一步就是拉取所需的镜像文件。这里涉及到两个主要组件:一个是用于处理数据流的应用程序`docker.io/sladesoftware/log-application:latest`[^2];另一个则是特定版本的日志收集工具`docker.io/elastic/filebeat:7.8.0`。不过针对DeepSeek项目本身,则需要找到对应的预构建镜像或是自行创建适合该模型运行的基础镜像。 关于Ollama的支持,在此假设其作为服务端的一部分被集成到了最终使用的容器化应用里。而Open-WebUI作为一个图形界面前端框架,可以方便开发者调试以及用户交互操作。通常情况下,这类web应用程序也会被打包成独立的Docker镜像来简化分发与部署工作。 下面是一个简单的Python脚本例子展示如何通过命令行调用API接口启动相关服务: ```python import subprocess def start_services(): try: # 启动日志收集器FileBeat filebeat_command = "docker run -d docker.io/elastic/filebeat:7.8.0" process_filebeat = subprocess.Popen(filebeat_command.split(), stdout=subprocess.PIPE) # 启动Log Application log_app_command = "docker run -d docker.io/sladesoftware/log-application:latest" process_logapp = subprocess.Popen(log_app_command.split(), stdout=subprocess.PIPE) output, error = process_filebeat.communicate() if error is None: print("Services started successfully.") else: print(f"Error occurred while starting services: {error}") except Exception as e: print(e) if __name__ == "__main__": start_services() ``` 值得注意的是,实际环境中可能还需要考虑网络设置、存储卷挂载等问题以确保各个微服务之间能够正常通信协作。此外,由于具体实现细节会依赖于所选的技术栈及业务需求,因此建议参考更多针对性强的学习资源如《Docker入门到实践》一书获取深入理解。 最后提醒一点,当涉及敏感信息传输时务必遵循安全最佳实践原则保护隐私不受侵犯。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值