OpenAI Triton 简介&&Triton架构

1.Triton 简介

OpenAI Triton paper 中的介绍是 “An Intermediate Language and Compiler for Tiled Neural Network Computations”,其中几个关键词应该能够代表其特点:

  • Intermediate Language, 目前是基于 Python 的 DSL
  • Compiler ,是一个经典的 Compiler 的架构
  • Tiled Computation,面向 GPU 体系特点,自动分析和实施 tiling 

 简而言之,Triton 提供了一套针对 GPU Kernel 的开发的 Language(基于 Python) 和 高性能 Compiler。因此,就层次而言,Triton的 DNN 开发能力与 CUDA 的部分(也就是说算子层面)相对应,但与TVM、XLA等直接面向 DL 的 Domain compiler 无法完全对应。TVM、XLA这些深度学习编译器拥有从构图到 auto fusion 等端到端的能力,而Triton则是面向偏底层的也是最通用的 Kernel 开发问题(OpenAI triton分享:Triton概述_哔哩哔哩_bilibili)。

2.Triton代码的架构

Triton 架构总体上如下图所示:

 总体分为三部分:

  1. Frontend(前端),将用户的 Python kernel code 转换为 Triton IR,以及维护 kernel launch 的 Runtime;
  2. Optimizer,通过各类 pass 将 Triton IR 逐步转换为优化过的 TritonGPU IR;
  3. Backend(后端),将 TritonGPU IR 逐步转换为 LLVM IR,并最终通过硬件平台后端支持,生成对应的可执行文件,如nvidia上是通过ptxas 编译为 cubin执行。

贯穿这三部分的核心表示是 Triton 的 IR,分为两个层次:

  1. Triton Dialect,表示计算逻辑,硬件无关的表达;
  2. TritonGPU Dialect,GPU 相关的计算表示。

 这两者都是基于 MLIR 的自定义 dialect,除此之外,Triton 也复用了很多社区的 dialect 来进行宏观的表示,包括:

      std dialect: tensor, int, float 等数据类型;

      arith dialect:各类数学操作;

     scf dialect:if, for 等控制流;

     nvvm dialect:获取 thread_id等少量操作;

     gpu dialect:printf 等少量操作。

Triton 中IR转换过程(nvidia平台为例)如下图所示:

     蓝色的两部分主要是 MLIR 体系涉及的部分,随后 MLIR 会转换为 LLVM IR,之后 Triton 会调用 NVPTX 转换为 PTX Assembly,随后由 CUDA 的 ptxas 编译器编译为 cubin(OpenAI triton分享:triton编译流程_哔哩哔哩_bilibili)。

 

OpenAI Triton推理引擎作为一个开源的深度学习推理平台,其跨框架的模型支持和高效推理能力来自于其灵活的软件架构和深入的源码设计。Triton 3.0.0版本特别支持TensorFlow、PyTorch、ONNX Runtime等多种深度学习框架,其关键在于模型加载、内存管理、计算图优化、调度与执行等核心组件的高效运作。 参考资源链接:[OpenAI Triton 3.0.0源码解析与应用](https://wenku.csdn.net/doc/3qem4v4g67?spm=1055.2569.3001.10343) 以模型加载为例,Triton需要能够兼容各种框架的模型格式,通过分析和理解不同框架的模型定义,将其转换为Triton内部表示(IR),这通常是图优化和执行的基础。内存管理方面,Triton利用高级内存管理技术来优化内存使用,减少碎片化,保证了在多模型并发推理时的性能表现。计算图优化是通过一系列图变换来提高计算效率,比如融合连续的卷积层,减少内存访问次数和计算量。调度和执行模块负责根据当前硬件资源和模型特性,动态分配计算任务,优化执行顺序和并行度,从而提升推理性能。 《OpenAI Triton 3.0.0源码解析与应用》这本书深入讲解了Triton的源码结构和关键算法实现。通过阅读这本书,开发者不仅可以理解Triton的设计哲学和架构选择,还可以掌握如何扩展和优化Triton以满足特定的业务需求。该资源对理解和应用Triton的编译器技术和算法实现提供了丰富的信息,对于希望深入了解Triton软件开发和源码分析的用户来说,是一个不可多得的资料。 在学习了Triton的源码和实现机制后,想要进一步拓展深度学习和机器学习知识的用户,可以考虑探索更多开源项目和高级技术文档。这些资源能够帮助你更全面地掌握深度学习推理引擎的实现细节,以及如何在实际项目中应用这些技术来解决复杂的机器学习问题。 参考资源链接:[OpenAI Triton 3.0.0源码解析与应用](https://wenku.csdn.net/doc/3qem4v4g67?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值