学习笔记:蚁群算法

一、算法介绍

1、蚁群算法于1992年首次提出,该算法模拟了自然界中蚂蚁的觅食行为。

2、蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其他蚂蚁释放的信息素。信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短。

3、通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该路径上的信息素浓度,这样,会形成一个正反馈。最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即距离最短。

二、算法思想

1、用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁蚁群的所有路径构成待优化问题的解空间。

2、路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也越来越多。

3、最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

 三、算法过程

 1、启发函数\eta _{_{_{_{}}}}^{_{}^{}}ij(t):两点间距离的倒数,例如AB之间的启发函数是1/12。

allowk:走到某一点时,下一步可以走过的距离,不包括走过的,例如从A点走向B点后,allowk包括F和C点。

τ:信息素浓度。α为信息素重要程度因此,其数值越大,表示信息素的浓度在转移中起的作用越大。β为启发函数的重要成都,其值越大,表示启发函数在转移中的作用越大。

2、信息素浓度的更新公式

 3、流程图

 

% Dijkstra算法
% 作者:Ally
% 日期:2020/12/26

clc
clear
close all


%% 初始化参数
% 根据节点的邻近节点表及字母节点-数字节点对应表,构造节点元胞数组
nodes_data = cell(0);
nodes_data(1,:) = {1, [2, 6, 7], [12, 16, 14]};
nodes_data(2,:) = {2, [1, 3, 6], [12, 10, 7]};
nodes_data(3,:) = {3, [2, 4, 5, 6], [10, 3, 5, 6]};
nodes_data(4,:) = {4, [3, 5], [3, 4]};
nodes_data(5,:) = {5, [3, 4, 6, 7], [5, 4, 2, 8]};
nodes_data(6,:) = {6, [1, 2, 3, 5, 7], [16, 7, 6, 2, 9]};
nodes_data(7,:) = {7, [1, 5, 6], [14, 8, 9]};

% 始末节点
node_start = 4;                       % 初始源节点
node_end = 1;                         % 终节点

% 蚁群相关定义
m = 50;                              % 蚂蚁数量
n = size(nodes_data,1);              % 节点数量
alpha = 1;                           % 信息素重要程度因子
beta = 5;                            % 启发函数重要程度因子
rho = 0.1;                           % 信息素挥发因子
Q = 1;                               % 常数

% 迭代过程中,相关参数初始化定义
iter = 1;                            % 迭代次数初值
iter_max = 100;                      % 最大迭代次数 
Route_best = cell(iter_max,1);       % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度

% 将信息素、挥发因子一并放入nodes_data中
Delta_Tau_initial = nodes_data(:,1:2);
for i = 1:size(nodes_data,1)
    nodes_data{i,4} = ones(1, length(nodes_data{i,3}));   % 信息素
    nodes_data{i,5} = 1./nodes_data{i,3};                 % 挥发因子
    Delta_Tau_initial{i,3} = zeros(1, length(nodes_data{i,3}));
end


%% 迭代寻找最佳路径
while iter <= iter_max  
  
    route = cell(0);
    
    %%  逐个蚂蚁路径选择
    for i = 1:m
        % 逐个节点路径选择
        neighbor = cell(0);
        node_step = node_start;
        path = node_step;
        dist = 0;
        while ~ismember(node_end, path) %当路径表里面包含了终节点时,该蚂蚁完成路径寻优,跳出循环
           
            % 寻找邻近节点           
            neighbor = nodes_data{node_step,2};
            
            % 删除已经访问过的临近节点
            idx = [];
            for k = 1:length(neighbor)
                if ismember(neighbor(k), path)
                    idx(end+1) =  k;
                end
            end
            neighbor(idx) = [];
            
            % 判断是否进入死胡同, 若是,直接返回到起点,重新寻路
            if isempty(neighbor)
                neighbor = cell(0);
                node_step = node_start;
                path = node_step;
                dist = 0;
                continue
            end
                
            
            %计算下一个节点的访问概率
            P = neighbor;
            for k=1:length(P)
                P(2,k) = nodes_data{node_step, 4}(k)^alpha * ...
                    nodes_data{node_step, 5}(k)^beta;
            end
            P(2,:) = P(2,:)/sum(P(2,:));
            
            % 轮盘赌法选择下一个访问节点
            Pc = cumsum(P(2,:));
            Pc = [0, Pc];
            randnum = rand;
            for k = 1:length(Pc)-1
                if randnum > Pc(k) && randnum < Pc(k+1)
                    target_node = neighbor(k);
                end
            end
            
            
            % 计算单步距离
            idx_temp = find(nodes_data{node_step, 2} == target_node);
            dist = dist + nodes_data{node_step, 3}(idx_temp);
            
            % 更新下一步的目标节点及路径集合            
            node_step = target_node;
            path(end+1) = node_step;         
                       
        end
        
        % 存放第i只蚂蚁的累计距离及对应路径
        Length(i,1) = dist;
        route{i,1} = path;
    end
    
    %% 计算这一代的m只蚂蚁中最短距离及对应路径
    if iter == 1
        [min_Length,min_index] = min(Length);
        Length_best(iter) = min_Length;
        Length_ave(iter) = mean(Length);
        Route_best{iter,1} = route{min_index,1};
        
    else
        [min_Length,min_index] = min(Length);
        Length_best(iter) = min(Length_best(iter - 1),min_Length);
        Length_ave(iter) = mean(Length);
        if Length_best(iter) == min_Length
            Route_best{iter,1} = route{min_index,1};
        else
            Route_best{iter,1} = Route_best{iter-1,1};
        end
    end
    
    %% 更新信息素
    
    % 计算每一条路径上的经过的蚂蚁留下的信息素
    Delta_Tau = Delta_Tau_initial;    
    
    % 逐个蚂蚁计算
    for i = 1:m
       
        % 逐个节点间计算
        for j = 1:length(route{i,1})-1
            node_start_temp = route{i,1}(j);
            node_end_temp = route{i,1}(j+1);
            idx =  find(Delta_Tau{node_start_temp, 2} == node_end_temp);
            Delta_Tau{node_start_temp,3}(idx) = Delta_Tau{node_start_temp,3}(idx) + Q/Length(i);
        end
        
    end
    
    % 考虑挥发因子,更新信息素
    for i = 1:size(nodes_data, 1)
        nodes_data{i, 4} = (1-rho) * nodes_data{i, 4} + Delta_Tau{i, 3};
    end
    
    % 更新迭代次数
    iter = iter + 1;
end


%% 绘图、结果    

figure
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')

% 最优路径
[dist_min, idx] = min(Length_best);
path_opt = Route_best{idx,1};

学习自B站:小黎的Ally

视频链接:路径规划与轨迹跟踪系列算法学习_第2讲_蚁群算法_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值