一般图最大匹配--带花树算法

前置技能

匈牙利算法

增广路

从一个未匹配点到另一个未匹配点,中间经过的匹配边和未匹配边交替出现的一条路径

从上面的性质来看
每次找到一条增广路,增广路一定有奇数条边,而且未匹配边一定比匹配边多一
那么把匹配和未匹配做一遍类似异或的操作就能使答案 +1 + 1
如果找不到增广路那么就是最大匹配了

然后这就是匈牙利算法的思想
但是这只是对于二分图来讲的
而对于不能变成二分图的图,就不行了
比如这个

深色的为匹配边
这显然是增广路,但是显然不能这样,如果取反,肯定是不合法的
因为一个奇数的环中一点连了两条同为匹配或未匹配的边
此时就需要进行修改

带花树算法

对于每个奇环,肯定是有一个点不会和环内的点匹配的
那么我们可以不管这个环内的匹配,直接缩成一个点
只需要知道环内的走向,满足找到增广路后取反合法就好了,取反时展开环

算法过程

把点分成两类: S S 类和T
每次选一个 S S 点出发增广
pre记录每个 T T 点扩展而来的S
S S 点扩展节点, 如果是走过的T点, 直接跳过
如果 T T 没走过, 并且没有被匹配, 那么找到了一条增广路,
此时直接往回走, 找到每个T点的 pre p r e , 直接匹配这两个点,
然后跳到原来 pre p r e 匹配的点上继续往回处理
相当于是对匹配边与未匹配边进行异或操作
否则如果 T T 被匹配了, 那么把它匹配的点加入队列, 继续增广
以上是匈牙利算法的过程

重点是如果遇到了走过的S
此时就要进行”开花”的操作
首先找到这两个点的 LCA L C A , 准确来讲应该是这两个点所属”花”的 LCA L C A , 然后缩成一朵”大花”, 把它看成 S S 点就好了
LCA就暴力求一下就好了
此时我们要考虑这朵”大花”内 pre p r e 的变化
对于这两个点, 设为 x x , y, 它们都是 S S 点, 从x走到了 y y
往回跳到LCA
每次跳到它的匹配点, 如果它是 T T 点, 变成S点, 丢进队列内
每次它和它的匹配点直接 pre p r e 相互连
最后 x x , y pre p r e 也相互连, 表示在同一个”花”内
每次找到增广路往回走到 x x , x y y 这条边是未匹配的, 此时x一定匹配了外面的一个点
那么就只要沿着 x x 之前匹配的点往回继续走就好了
也就是说pre在”花”内这样连接, 就使得每次回到”花”时, 走的是那条未匹配的边回去

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(505);
typedef int Arr[_];

IL int Input(){
    RG int x = 0, z = 1; RG char c = getchar();
    for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    return x * z;
}

Arr first, match, fa, vis, tim, pre;
int n, m, cnt, idx, ans;
queue <int> Q;
struct Edge{
    int to, next;
} edge[_ * _];

IL void Add(RG int u, RG int v){
    edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
}

IL int Find(RG int x){
    return x == fa[x] ? x : fa[x] = Find(fa[x]);
}

IL int LCA(RG int x, RG int y){
    ++idx, x = Find(x), y = Find(y);
    while(tim[x] != idx){
        tim[x] = idx;
        x = Find(pre[match[x]]);
        if(y) swap(x, y);
    }
    return x;
}

IL void Blossom(RG int x, RG int y, RG int p){
    while(Find(x) != p){
        pre[x] = y, y = match[x];
        if(vis[y] == 2) vis[y] = 1, Q.push(y);
        if(Find(x) == x) fa[x] = p;
        if(Find(y) == y) fa[y] = p;
        x = pre[y];
    }
}

IL int Aug(RG int S){
    while(!Q.empty()) Q.pop();
    Fill(vis, 0), Fill(pre, 0);
    for(RG int i = 1; i <= n; ++i) fa[i] = i;
    Q.push(S), vis[S] = 1;
    while(!Q.empty()){
        RG int u = Q.front(); Q.pop();
        for(RG int e = first[u]; e != -1; e = edge[e].next){
            RG int v = edge[e].to;
            if(Find(u) == Find(v) || vis[v] == 2) continue;
            if(!vis[v]){
                vis[v] = 2, pre[v] = u;
                if(!match[v]){
                    for(RG int x = v, lst; x; x = lst)
                        lst = match[pre[x]], match[x] = pre[x], match[pre[x]] = x;
                    return 1;
                }
                vis[match[v]] = 1, Q.push(match[v]);
            }
            else if(vis[v] == 1){
                RG int p = LCA(u, v);
                Blossom(u, v, p);
                Blossom(v, u, p);
            }
        }
    }
    return 0;
}

int main(RG int argc, RG char *argv[]){
    Fill(first, -1);
    n = Input(), m = Input();
    for(RG int i = 1, u, v; i <= m; ++i)
        u = Input(), v = Input(), Add(u, v), Add(v, u);
    for(RG int i = 1; i <= n; ++i) if(!match[i]) ans += Aug(i);
    printf("%d\n", ans);
    for(RG int i = 1; i <= n; ++i) printf("%d ", match[i]);
    return puts(""), 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值