AtCoder Beginner Contest 335 E题 Non-Decreasing Colorful Path

E题:Non-Decreasing Colorful Path

标签:最短路、 d i j k s t r a dijkstra dijkstra
题意:给定一个 n n n个顶点和 m m m条边的无向图,每个顶点上有分数 a i a_i ai,求从顶点 1 1 1到顶点 n n n得分最高的路径。得分是路径中顶点分数不同的顶点数目,要保证路径上的顶点分数是不递减的(包含等于)
比如路径上顶点的分数分别为 10 10 10 20 20 20 20 20 20 30 30 30 40 40 40=> 那么得分为 4 4 4
题解:比较典型的 d i j k s t r a dijkstra dijkstra的变型题(加上约束条件),因为题目要求不递减,堆优化部分可以按每个顶点的分数从小到大排序,松弛部分操作的时候 保证是从低分数的顶点到高分数(相等也进入更新)的顶点,跑最长路;需要注意处理等于的时候,得分是顶点中分数不同的顶点数目。
代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
ll a[200005], d[200005];
vector<ll> e[200005];
priority_queue< pair<ll, ll> > q;

int main() {
    ll n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> a[i];
    for (int i = 1; i <= m; i++) {
        ll u, v;
        cin >> u >> v;
        e[u].push_back(v);
        e[v].push_back(u);
    }

    d[1] = 1;
    q.push(make_pair(-a[1], 1));

    while (!q.empty()) {
        int u = q.top().second;
        q.pop();
        for (auto v: e[u]) {
            if (a[v] >= a[u]) {
                if (d[v] < d[u] + (a[v] != a[u])) {
                    d[v] = d[u] + (a[v] != a[u]);
                    q.push(make_pair(-a[v], v));
                }
            }
        }
    }

    cout << d[n];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值